

### 5V, high static protection, 5M, half duplex, RS485/RS422 transceiver

## FEATURES

- ➢ 5V power supply, half-duplex
- > 1/8 unit load, allow up to 256 transceivers on the bus
- Driver short-circuit output protection
- Overtemperature protection
- Low power off function
- Receiver open-circuit failure protection
- Strong anti-noise ability
- Integrated transient voltage suppression function
- Data transmission up to 5Mbps in an electric noise environment
- ▶ ESD protection for A, B pins: contact discharge 15kV

# DESCRIPTION

SIT13085E is a RS-485 transceiver with 5V power supply, half duplex, low power consumption, and fully meets the requirements of TIA/EIA-485 standard.

SIT13085E includes a driver and a receiver, both of which can be enabled and closed independently. When both are disabled, both the driver and the receiver output are high resistance state. SIT13085E has 1/8 load, which allows 256 SIT13085E transceivers to be connected to the same communication bus. It can realize error-free data transmission up to 5Mbps.

SIT13085E has a working voltage range of 4.5V~5.5V, and has the functions of fail-safe, current-limiting protection, over-voltage protection, etc.

SIT13085E has excellent ESD release ability, contact discharge meets IEC61000-4-2  $\pm$ 15kV.

### SIT13085E RO RE DE DE DE DE GND

Fig 1 SIT13085E pin configuration

# PRODUCT APPEARANCE

SIT13085E



Provide green and environmentally friendly lead-free package

PIN CONFIGURATION

51 芯力特

# PIN DESCRIPTION

| PIN | SYMBOL | DESCRIPTION                                                                                                                                                                                    |
|-----|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | RO     | Receiver Output.<br>When /RE is low and if A-B≥-10mV, RO will be high; if<br>A-B≤-200mV, RO will be low.                                                                                       |
| 2   | /RE    | Receiver Output Enable.<br>Drive /RE low to enable RO; RO is high impedance when /RE is<br>high. Drive /RE high and DE low to enter low-power shutdown<br>mode.                                |
| 3   | DE     | Driver Output Enable.<br>Drive DE high to enable driver outputs. These outputs are high<br>impedance when DE is low. Drive /RE high and DE low to enter<br>low-power shutdown mode.            |
| 4   | DI     | Driver Input.<br>With DE high, a low on DI forces non-inverting output low and<br>inverting output high. Similarly, a high on DI forces non-inverting<br>output high and inverting output low. |
| 5   | GND    | Ground.                                                                                                                                                                                        |
| 6   | А      | Non-inverting receiver input and non-inverting driver output.                                                                                                                                  |
| 7   | В      | Inverting Receiver Input and Inverting Driver Output.                                                                                                                                          |
| 8   | VCC    | Positive supply.                                                                                                                                                                               |



5V, high static protection, 5M, half duplex, RS485/RS422 transceiver

| Parameter                      | Symbol         | Value        | Unit |
|--------------------------------|----------------|--------------|------|
| Supply Voltage                 | VCC            | +7           | V    |
| Control Input Voltage          | /RE, DE, DI    | -0.3~VCC+0.3 | V    |
| Receiver Input Voltage         | Α, Β           | -7~13        | V    |
| Receiver Output Voltage        | RO             | -0.3~VCC+0.3 | V    |
| Operating Temperature<br>Range | T <sub>A</sub> | -40~85       | °C   |
| Storage Temperature<br>Range   | Tj             | -60~150      | °C   |
| Welding temperature            |                | 300          | °C   |
| Continuous power               | SOP8           | 400          | mV   |
| dissipation                    | DIP8           | 700          | mV   |

# LIMITING VALUES

The maximum limit parameters mean that exceeding these values may cause irreversible damage to the device. Under these conditions, it is not conducive to the normal operation of the device. The continuous operation of the device at the maximum allowable rating may affect the reliability of the device. The reference point for all voltages is ground.

# DRIVER DC ELECTRICAL CHARACTERISTICS

| Parameter                                                             | Symbol           | Condition                        | Min. | Тур. | Max. | Unit |
|-----------------------------------------------------------------------|------------------|----------------------------------|------|------|------|------|
| Differential Driver<br>Output (No load)                               | V <sub>OD1</sub> |                                  |      | 5    |      | V    |
| Differential Driver                                                   | V                | <u>Fig 2</u> , RL = 54 $\Omega$  |      | 3.5  | VCC  | V    |
| Output                                                                | V <sub>OD2</sub> | <u>Fig 2</u> , RL = 100 $\Omega$ |      | 4.0  | VCC  | V    |
| Change in<br>Magnitude of<br>Output Voltage<br>(NOTE1)                | $\Delta V_{OD}$  | <u>Fig 2</u> , RL = 54 $\Omega$  |      |      | 0.2  | V    |
| Common-Mode<br>Output Voltage                                         | V <sub>OC</sub>  | <u>Fig 2</u> , RL = 54 $\Omega$  |      |      | 3    | V    |
| Change in<br>Magnitude of<br>Common-Mode<br>Output Voltage<br>(NOTE1) | ΔVoc             | <u>Fig 2</u> , RL = 54 Ω         |      |      | 0.2  | V    |



5V, high static protection, 5M, half duplex, RS485/RS422 transceiver

| Parameter                                                 | Symbol            | Condition                  | Min. | Тур. | Max. | Unit |
|-----------------------------------------------------------|-------------------|----------------------------|------|------|------|------|
| Input High Voltage                                        | $V_{\mathrm{IH}}$ | DE, DI, /RE                | 2.0  |      |      | V    |
| Input Low Voltage                                         | V <sub>IL</sub>   | DE, DI, /RE                |      |      | 0.8  | V    |
| Logic Input Current                                       | I <sub>IN1</sub>  | DE, DI, /RE                | -2   |      | 2    | μΑ   |
| Output short-circuit<br>current, short-circuit<br>to high | I <sub>OSD1</sub> | Short-circuit to<br>0V~12V | 35   |      | 250  | mA   |
| Output short-circuit<br>current, short-circuit<br>to high | Iosd2             | Short-circuit to<br>-7V~0V | -250 |      | -35  | mA   |
| Thermal shutdown<br>threshold<br>temperature              |                   |                            |      | 150  |      | °C   |
| Thermal shutdown<br>hysteresis<br>temperature             |                   |                            |      | 20   |      | °C   |

(Unless otherwise noted, VCC=5V $\pm$ 10%, Temp=T<sub>MIN</sub>~T<sub>MAX</sub>, all typical values are measured in VCC=+5V, T<sub>A</sub>=25°C)

NOTE1:  $\Delta V_{OD}$  and  $\Delta V_{OC}$  are the changes in  $V_{OD}$  and  $V_{OC}$ , respectively, when the DI input changes state.

## **RECEIVER DC ELECTRICAL CHARACTERISTICS**

| Parameter                            | Symbol           | Condition                                                   | Min.    | Тур. | Max. | Unit |
|--------------------------------------|------------------|-------------------------------------------------------------|---------|------|------|------|
|                                      | т                | $DE = 0 V,$ $VCC=0 \text{ or } 5V$ $V_{IN} = 12 V$          |         |      | 125  | μΑ   |
| Input Current (A, B)                 | I <sub>IN2</sub> | $DE = 0 V,$ $VCC=0 \text{ or } 5V$ $V_{IN} = -7 V$          | -100    |      |      | μΑ   |
| Positive Input<br>Threshold Voltage  | V <sub>IT+</sub> | -7V≤V <sub>CM</sub> ≤12V                                    |         |      | -10  | mV   |
| Reverse Input<br>Threshold Voltage   | V <sub>IT-</sub> | -7V≤V <sub>CM</sub> ≤12V                                    | -200    |      |      | mV   |
| Input Hysteresis<br>Voltage          | $V_{hys}$        | -7V≤V <sub>CM</sub> ≤12V                                    | 10      | 30   |      | mV   |
| Output High Voltage                  | V <sub>OH</sub>  | $I_{OUT} = -4mA,$ $V_{ID} = +200 \text{ mV}$                | VCC-1.5 |      |      | V    |
| Output Low Voltage                   | V <sub>OL</sub>  | $I_{OUT} = +4mA,$ $V_{ID} = -200 \text{ mV}$                |         |      | 0.4  | V    |
| Three-State input<br>leakage current | I <sub>OZR</sub> | $0.4 \mathrm{V} < \mathrm{V}_{\mathrm{O}} < 2.4 \mathrm{V}$ |         |      | ±1   | μΑ   |



| Parameter                            | Symbol           | Condition                | Min. | Тур. | Max. | Unit |
|--------------------------------------|------------------|--------------------------|------|------|------|------|
| Receiver Input<br>Resistance         | R <sub>IN</sub>  | -7V≤V <sub>CM</sub> ≤12V | 96   |      |      | kΩ   |
| Receiver<br>Short-Circuit<br>Current | I <sub>OSR</sub> | 0 V≤V₀≤VCC               | ±7   |      | ±95  | mA   |

 $(Unless otherwise noted, VCC=5V\pm10\%, Temp=T_{MIN} \sim T_{MAX}, all typical values are measured in VCC=+5V, T_{A}=25^{\circ}C)$ 

# SUPPLY CURRENT

| Parameter        | Symbol            | Condition | Min. | Тур. | Max. | Unit |
|------------------|-------------------|-----------|------|------|------|------|
|                  | Т                 | /RE=0V,   |      | 600  | 750  |      |
| Same by Carry of | I <sub>CC1</sub>  | DE = 0 V  |      | 600  | 750  | μA   |
| Supply Current   | т                 | /RE=VCC,  |      | 580  | 750  |      |
|                  | I <sub>CC2</sub>  | DE=VCC    |      |      |      | μΑ   |
| Shutdown Current | I <sub>SHDN</sub> | /RE=VCC,  |      | 0.5  | 10   |      |
|                  |                   | DE=0V     |      |      |      | μΑ   |

| ESD |  |
|-----|--|
|-----|--|

| Parameter   | Symbol | Condition                | Min. | Тур. | Max. | Unit |
|-------------|--------|--------------------------|------|------|------|------|
| A, B        |        | Contact discharge        |      | ±15  |      | kV   |
| Other ports |        | Human body mode<br>(HBM) |      | ±2   |      | kV   |

# **DRIVER SWITCHING CHARACTERISTIC**

| Parameter                                                    | Symbol                            | Condition                                                                               | Min. | Тур. | Max. | Unit |
|--------------------------------------------------------------|-----------------------------------|-----------------------------------------------------------------------------------------|------|------|------|------|
| Driver Input to<br>Output Propagation<br>Delay (Low to High) | t <sub>dplh</sub>                 |                                                                                         |      | 20   | 60   | ns   |
| Driver Input to<br>Output Propagation<br>Delay (High to Low) | t <sub>dphl</sub>                 | $R_{DIFF} = 54\Omega,$<br>$C_{L1} = C_{L2} = 100 \text{pF}$<br><u>Fig 3 &amp; Fig 4</u> |      | 20   | 60   | ns   |
| t <sub>dplh</sub> -t <sub>dphl</sub>                         | t <sub>SKEW1</sub>                |                                                                                         |      |      | ±10  | ns   |
| Rising time/Falling<br>time                                  | t <sub>DR</sub> , t <sub>DF</sub> |                                                                                         |      | 5    | 10   | ns   |



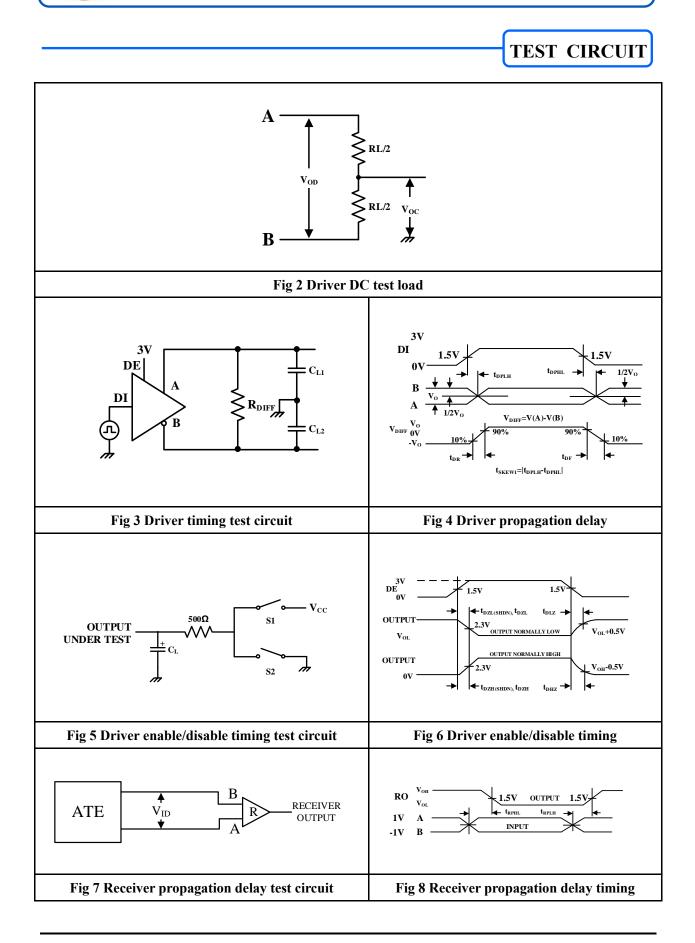
5V, high static protection, 5M, half duplex, RS485/RS422 transceiver

| Parameter                                     | Symbol                 | Condition                                                           | Min. | Тур. | Max. | Unit |
|-----------------------------------------------|------------------------|---------------------------------------------------------------------|------|------|------|------|
| Enable to Output<br>High                      | t <sub>DZH</sub>       | $C_L = 100 pF,$<br>S1 closed                                        |      | 30   | 100  | ns   |
| Enable to Output Low                          | $t_{DZL}$              | <u>Fig 5</u> & <u>Fig 6</u>                                         |      | 30   | 100  | ns   |
| Output Low to Enable                          | t <sub>DLZ</sub>       | $C_{\rm L}=15 {\rm pF},$                                            |      | 70   | 100  | ns   |
| Input High to Disable                         | t <sub>DHZ</sub>       | S2 closed<br><u>Fig 5</u> & <u>Fig 6</u>                            |      | 70   | 100  | ns   |
| In Shutdown mode,<br>Enable to Output<br>High | tdzh(shdn)             | $C_{L} = 15 \text{pF},$<br>S2 closed<br><u>Fig 5</u> & <u>Fig 6</u> |      | 600  | 1100 | ns   |
| In Shutdown mode,<br>Enable to Output Low     | t <sub>DZL(SHDN)</sub> | $C_{L} = 15 \text{pF},$<br>S1 closed<br><u>Fig 5</u> & <u>Fig 6</u> |      | 600  | 1100 | ns   |

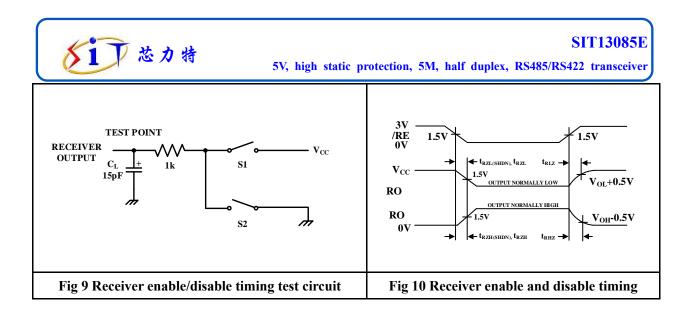
# **RECEIVER SWITCHING CHARACTERISTICS**

| Parameter                                                      | Symbol                 | Condition                                                                  | Min. | Тур. | Max. | Unit |
|----------------------------------------------------------------|------------------------|----------------------------------------------------------------------------|------|------|------|------|
| Receiver Input to<br>Output Propagation<br>Delay (Low to High) | t <sub>rplh</sub>      | <u>Fig 7</u> & <u>Fig 8</u>                                                |      | 90   | 140  | ns   |
| Receiver Input to<br>Output Propagation<br>Delay (High to Low) | t <sub>RPHL</sub>      | V <sub>ID</sub> ≥2.0V;<br>Rising and falling<br>time V <sub>ID</sub> ≤15ns |      | 90   | 140  | ns   |
| t <sub>RPLH</sub> - t <sub>RPHL</sub>                          | t <sub>skew2</sub>     |                                                                            |      | 6    | 10   | ns   |
| Enable to Output<br>Low                                        | t <sub>RZL</sub>       | C <sub>L</sub> =100pF,<br>S1 closed<br><u>Fig 9</u> & <u>Fig 10</u>        |      | 30   | 54   | ns   |
| Enable to Output<br>High                                       | t <sub>RZH</sub>       | C <sub>L</sub> =100pF,<br>S2 closed<br><u>Fig 9</u> & <u>Fig 10</u>        |      | 30   | 54   | ns   |
| Output Low to<br>Disable Time                                  | t <sub>RLZ</sub>       | C <sub>L</sub> =100pF,<br>S1 closed,<br><u>Fig 9</u> & <u>Fig 10</u>       |      | 30   | 56   | ns   |
| Output High to<br>Disable Time                                 | t <sub>RHZ</sub>       | C <sub>L</sub> =100pF,<br>S2 closed,<br><u>Fig 9</u> & <u>Fig 10</u>       |      | 30   | 56   | ns   |
| In Shutdown State,<br>Enable to Output<br>High Time            | t <sub>RZH(SHDN)</sub> | $C_{L}=100 \text{pF},$<br>S2 closed,<br><u>Fig 9</u> & <u>Fig 10</u>       |      | 230  | 1300 | ns   |

| 517芯力                                              | カ特<br>SIT13085E<br>5V, high static protection, 5M, half duplex, RS485/RS422 transceiver |                                                                      |      |      |      |      |
|----------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------|------|------|------|------|
| Parameter                                          | Symbol                                                                                  | Condition                                                            | Min. | Тур. | Max. | Unit |
| In Shutdown State,<br>Enable to Output<br>Low Time | t <sub>RZL(SHDN)</sub>                                                                  | C <sub>L</sub> =100pF,<br>S1 closed,<br><u>Fig 9</u> & <u>Fig 10</u> |      | 230  | 1300 | ns   |
| Time to Shutdown                                   | t <sub>shdn</sub>                                                                       | NOTE2                                                                | 50   | 150  | 400  | ns   |


NOTE2: when /RE=1 and DE=0 for less than 50ns, the device is guaranteed not to enter shutdown. If the enable inputs are in this state for at least 400ns, the device is guaranteed to have entered shutdown.

# FUNCTION TABLE


| <b>Driver Function</b> |           |             |              |       |  |  |
|------------------------|-----------|-------------|--------------|-------|--|--|
| CONT                   | ROL       | INPUT       | INPUT OUTPUT |       |  |  |
| /RE                    | DE        | DI          | Α            | В     |  |  |
| X                      | 1         | 1           | Н            | L     |  |  |
| X                      | 1         | 0           | L            | Н     |  |  |
| 0                      | 0         | Х           | Z            | Z     |  |  |
| 1                      | 0         | Х           | Z(shut       | down) |  |  |
| Х                      | (=irrelev | ant; Z=high | impedanc     | e     |  |  |

| CONT | FROL         | INPUT                 | OUTPUT |
|------|--------------|-----------------------|--------|
| /RE  | DE           | A-B                   | RO     |
| 0    | Х            | ≥-10mV                | Н      |
| 0    | Х            | ≤-200mV               | L      |
| 0    | Х            | Open/Short<br>circuit | Н      |
| 1    | Х            | Х                     | Z      |
| X=   | =irrelevant; | Z=high impeda         | ince   |

5V, high static protection, 5M, half duplex, RS485/RS422 transceiver



517 芯力特



### ADDITIONAL DESCRIPTION

### 1 Sketch

SIT13085E is a half-duplex high-speed transceiver, used for RS-485/RS-422 communication, including a driver and a receiver. It has the function of fail-safe, over-voltage protection, over-current protection, over-temperature protection. SIT13085E can realize error-free data transmission up to 5Mbps.

### 2 Fail-safe

The SIT13085E ensures a logic high output from the receiver when the receiver input is shorted or open circuit, or when all drivers are idle and connected to the terminated transmission line. This is achieved by setting the receiver input thresholds to -10mV and -200mV respectively. If the differential receiver input voltage (A-B)  $\geq$  -10mV, RO is logic high; if voltage (A-B)  $\leq$  -200mV, RO is logic low. When all transmitters are disabled and connected to the terminated bus, the receiver differential input voltage will be pulled to 0V through the termination resistor. Depending on the receiver thresholds, a logic high with a minimum noise margin of 50mV can be realized. The -10mV to -200mV threshold voltage is compliant with the  $\pm$  200mV EIA / TIA-485 standard.

### 3 Allowing up to 256 transceivers on the bus

The input impedance of the standard RS485 receiver is  $12k\Omega$  (1 unit load), and the standard driver can drive up to 32 unit loads. The receiver of SIT13085E transceiver has 1/8 unit load input impedance (96k $\Omega$ ), which allows up to 256 transceivers to be connected on the same communication bus in parallel. These devices can be combined arbitrarily or with other RS485 transceivers. Any combination of these devices and/or other RS-485 transceivers with a total of 32 unit loads or less can be connected to the line.

### 4 Driver output protection

Through two mechanisms to avoid the excessive output current and high power consumption caused by failure or bus conflict. The first one, over-current protection features fast short circuit protection in the whole common-mode voltage range (reference typical operating characteristics). Second, thermal shutdown circuit, when the core temperature exceeds 150°C, the output of the driver is forced into the high resistance state.

### **5** Typical Applications

**5.1 Bus Networking:** SIT13085E RS485 transceiver is designed for bidirectional data communication on multi-point bus transmission line. Fig 11 shows a typical network application circuit. These devices can also be used as linear repeaters with cables longer than 4000 feet. In order to reduce reflection, terminal matching should be carried out at both ends of the transmission line with its characteristic impedance, and the length of branch lines outside the main line should be as short as possible.

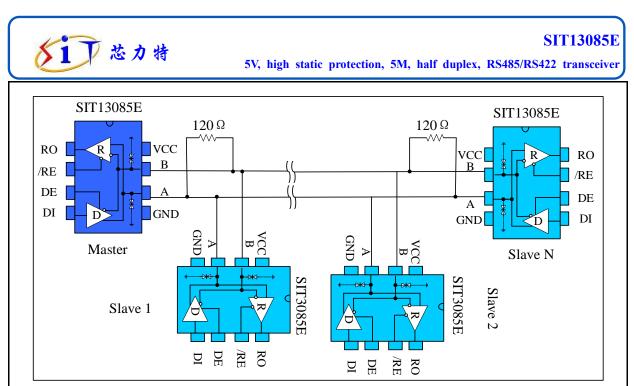



Fig 11 Bus type RS485 half-duplex communication network

**5.2 Hand in hand Networking:** also known as daisy chain topology, is the standard and specification of RS485 bus wiring, and is the RS485 bus topology recommended by TIA and other organizations. The wiring mode is that the main control equipment and a plurality of slave control equipment form a hand-held connection mode, as shown in <u>Fig 12</u>, and the hand-held mode is no branches. This wiring mode has the advantages of small signal reflection and high communication success rate.

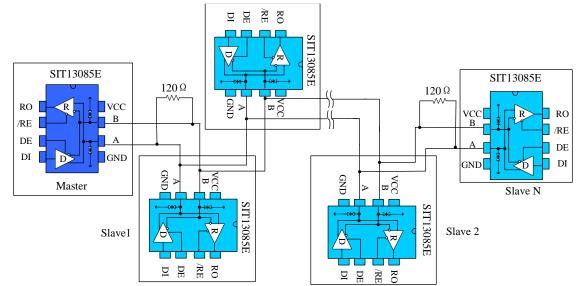
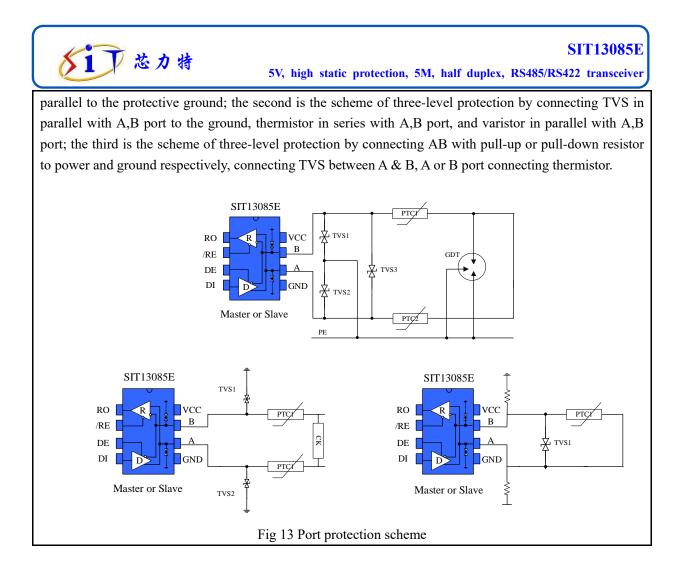
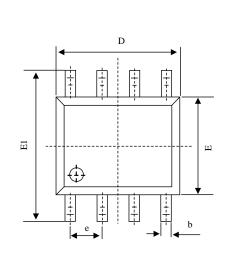
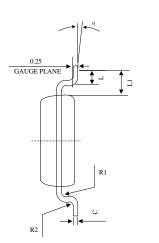
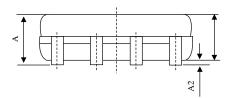




Fig 12 Hand in hand RS485 half-duplex communication network

**5.3 Bus port protection:** in severe environment, RS485 communication port is usually provided with electrostatic protection, lightning surge protection and other additional protection, and even the plan to prevent 380V market electricity access is needed to avoid the damage of intelligent instrument and industrial control host. Fig 13 shows three common RS485 bus port protection schemes. The first is the scheme of three-level protection by connecting TVS devices in parallel with A,B port to the protective ground, TVS devices in parallel with A,B port, thermistor in series with A,B port, gas discharge tube in



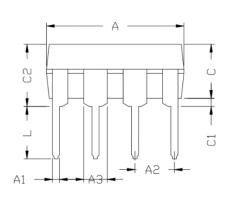


5V, high static protection, 5M, half duplex, RS485/RS422 transceiver

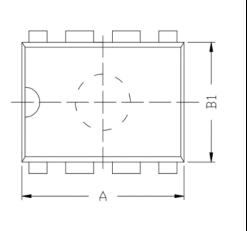

# SOP8 DIMENSIONS

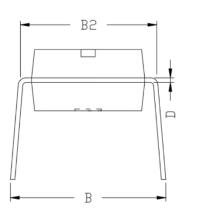
|        | PAC     | KAGE SIZE | E       |
|--------|---------|-----------|---------|
| Symbol | MIN./mm | TYP./mm   | MAX./mm |
| А      | 1.40    | 1.60      | 1.80    |
| A1     | 0.05    | 0.15      | 0.25    |
| A2     | 1.35    | 1.45      | 1.55    |
| b      | 0.30    | 0.40      | 0.50    |
| с      | 0.153   | 0.203-    | 0.253   |
| D      | 4.80    | 4.90      | 5.00    |
| Е      | 3.80    | 3.90      | 4.00    |
| E1     | 5.80    | 6.00      | 6.20    |
| L      | 0.45    | 0.70      | 1.00    |
| θ      | 2°      | 4°        | 6°      |
| L1     |         | 1.04 REF  |         |
| e      |         | 1.27 BSC  |         |
| R1     |         | 0.07 TYP  |         |
| R2     |         | 0.07 TYP  |         |

51 芯力特



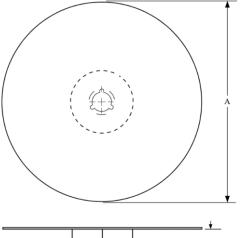




≤1 芯力特

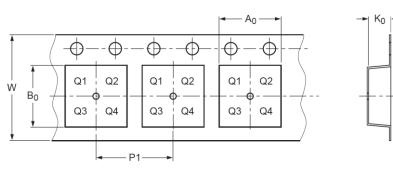
## **DIP8 DIMENSIONS**

|        | PACKAGE SIZE |          |         |  |  |  |
|--------|--------------|----------|---------|--|--|--|
| Symbol | MIN./mm      | TYP./mm  | MAX./mm |  |  |  |
| А      | 9.00         | 9.20     | 9.40    |  |  |  |
| A1     | 0.33         | 0.45     | 0.51    |  |  |  |
| A2     |              | 2.54TYP  |         |  |  |  |
| A3     |              | 1.525TYP |         |  |  |  |
| В      | 8.40         | 8.70     | 9.10    |  |  |  |
| B1     | 6.20         | 6.40     | 6.60    |  |  |  |
| B2     | 7.32         | 7.62     | 7.92    |  |  |  |
| С      | 3.20         | 3.40     | 3.60    |  |  |  |
| C1     | 0.50         | 0.60     | 0.80    |  |  |  |
| C2     | 3.71         | 4.00     | 4.31    |  |  |  |
| D      | 0.20         | 0.28     | 0.36    |  |  |  |
| L      | 3.00         | 3.30     | 3.60    |  |  |  |








# **TAPE AND REEL INFORMATION**





| A0 | Dimension designed to accommodate the   |
|----|-----------------------------------------|
|    | component width                         |
| B0 | Dimension designed to accommodate the   |
|    | component length                        |
| K0 | Dimension designed to accommodate the   |
|    | component thickness                     |
| W  | Overall width of the carrier tape       |
| P1 | Pitch between successive cavity centers |

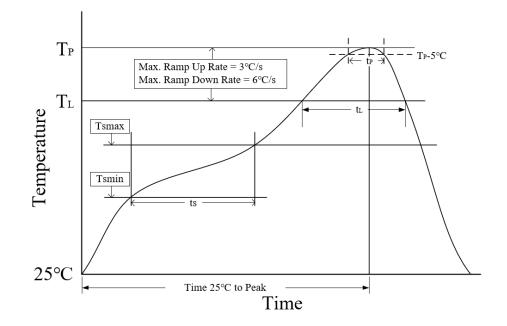


Direction of Feed

| PIN1 | is | in | quadrant 1 |  |
|------|----|----|------------|--|
|------|----|----|------------|--|

| Package<br>Type | Reel<br>Diameter<br>A (mm) | Tape<br>Width<br>W1 (mm) | A0<br>(mm) | B0<br>(mm) | K0<br>(mm) | P1<br>(mm) | W<br>(mm) |
|-----------------|----------------------------|--------------------------|------------|------------|------------|------------|-----------|
| SOP8            | 330±2                      | 12.4                     | 6.50±0.1   | 5.30±0.10  | 2.05±0.1   | 8.00±0.1   | 12.00±0.1 |

### **ORDERING INFORMATION**


| Type number  | Package | Packing       |
|--------------|---------|---------------|
| SIT13085EESA | SOP8    | Tape and reel |
| SIT13085EEPA | DIP8    | Tube          |

SOP8 is packed with 2500 pieces/disc in braided packaging. DIP8 is packed with 50 pieces/tube in tubed packaging.



5V, high static protection, 5M, half duplex, RS485/RS422 transceiver

## **REFLOW SOLDERING**



| Parameter                                                                   | Lead-free soldering conditions |
|-----------------------------------------------------------------------------|--------------------------------|
| Ave ramp up rate $(T_L \text{ to } T_P)$                                    | 3 °C/second max                |
| Preheat time ts<br>(T <sub>smin</sub> =150 °C to T <sub>smax</sub> =200 °C) | 60-120 seconds                 |
| Melting time $t_L(T_L=217 \text{ °C})$                                      | 60-150 seconds                 |
| Peak temp T <sub>P</sub>                                                    | 260-265 °C                     |
| $5^{\circ}$ C below peak temperature $t_P$                                  | 30 seconds                     |
| Ave cooling rate $(T_P \text{ to } T_L)$                                    | 6 °C/second max                |
| Normal temperature 25°C to peak temperature $T_P$ time                      | 8 minutes max                  |

#### Important statement

1 芯力特

1

SIT reserves the right to change the above-mentioned information without prior notice.



# **REVISION HISTORY**

| Version number | Data sheet status                                                                                                                                                                                                                                                               | Revision date |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| V1.0~V1.2      | Product datasheet.                                                                                                                                                                                                                                                              | October 2018  |
| V1.3           | Deleted "hot swap input" information;<br>Updated V <sub>IT+</sub> parameter;<br>Updated test circuit and test condition;<br>Updated SOP8 dimensions;<br>Added tape and reel information;<br>Updated ordering information;<br>Added reflow soldering;<br>Added revision history; | November 2023 |
|                | Adjusted format                                                                                                                                                                                                                                                                 |               |