

FEATURES

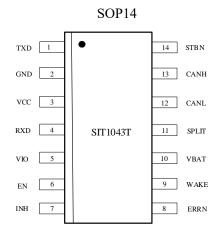
PRODUCT APPEARENCE

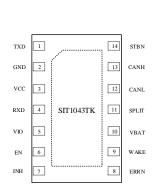
- Fully compatible with the ISO 11898-2:2016 standard
- Low power sleep mode and standby mode
- Remote wake-up function and local wake-up function
- \triangleright ±58V BUS protection
- \geq ±30V receiver common mode input voltage
- ➤ I/O pin supports 3.3V/5V MCU
- ➤ Driver (TXD) dominant timeout function
- > Under voltage protection on VBAT, VCC and VIO pins
- High-speed CAN, support 5Mbps CAN with Flexible Data-Rate
- > Sleep mode INH output pin with power disable function
- ➤ -40°C to 150°C junction temperature range with over temperature protection
- ➤ The typical loop delay from TXD to RXD is less than 100ns
- > High ElectroMagnetic Immunity
- Transceiver in unpowered state disengages from the bus
- With SPLIT pin for common-mode stabilization

Provide Green and Environmentally Friendly Lead-free package Provide SOP14 and DFN4.5×3.0-14 package

DESCRIPTION

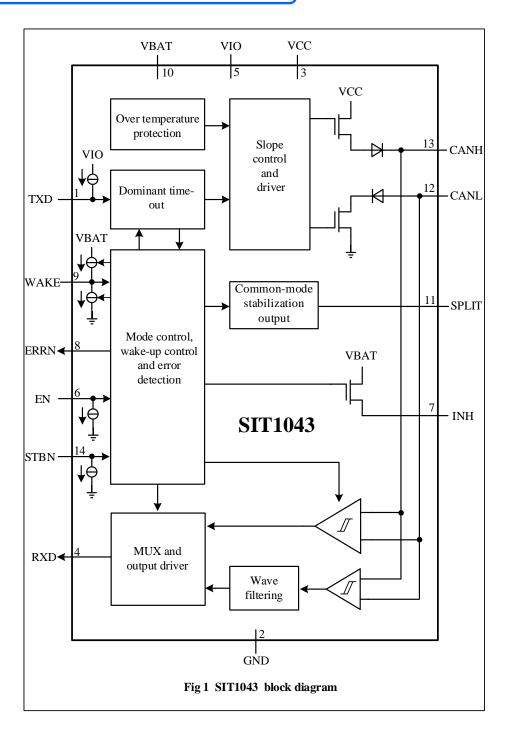
SIT1043 is an interface chip applied between CAN protocol controller and physical bus, supports 5Mbps Flexible Data-Rate, and has the capability of differential signal transmission between bus and CAN protocol controller. The SIT1043 features a CAN bus fault protection from -58V to +58V, and the receiver common mode input voltage can reach -30V to +30V, which is suitable for 12V or 24V application systems. The SIT1043 is powered by multiple power supplies and has multiple system protection and diagnostic functions to improve the stability of the device and CAN. In addition, SIT1043 has five working modes: normal mode, silent mode, standby mode, go-to-sleep mode and sleep mode. It supports local wake-up and remote wake-up in low power mode. The provided low power mode management can greatly save the power of CAN bus application system.


Applications: Automotive and Transport


Body Control Automotive Gateway

ADAS Information and entertainment

PIN CONFIGURATION


DFN14

PINNING

PIN	SYMBOL	DESCRIPTION
1	TXD	Transmit data input
2	GND	Ground
3	VCC	5V bus power supply
4	RXD	Receive data output; reads out data from the bus lines
5	VIO	I/O port power supply
6	EN	Enable control input
7	INH	Used to control the working state of the external voltage regulator, set to high after a wake-up event
8	ERRN	Error indication output
9	WAKE	Local wake-up input
10	VBAT	Battery power supply
11	SPLIT	Common-mode stabilization output
12	CANL	Low-level CAN bus input and output
13	CANH	High-level CAN bus input and output
14	STBN	Standby mode control input

INTERNAL CIRCUIT BLOCK DIAGRAM

RECOMMENDED WORK STATUS

PARAMETER	SYMBOL	VALUE	UNIT
VBAT supply voltage	VBAT	4.5~40	V
VCC supply voltage	VCC	4.5~5.5	V
VIO supply voltage	VIO	2.8~5.5	V
Logic output pin high level output current (RXD&ERRN)	I _{OH(LOGIC)}	>-2	mA
Logic output pin low level output current (RXD&ERRN)	I _{OL(LOGIC)}	<2	mA
INH output current	I _{O(INH)}	<1	mA
Operating temperature	T _A	-40~150	°C

LIMITING VALUES

PARAMETER	SYMBOL	VALUE	UNIT
Battery power supply	VBAT	-0.3~+58	V
Bus supply voltage	VCC	-0.3~+6	V
MCU side port	TXD, RXD, EN, STBN, VIO, ERRN	-0.3~+6	V
Bus side input voltage	CANH, CANL	-58~+58	V
Bus differential breakdown voltage	V _(CANH-CANL)	-20~+20	V
Storage temperature		-55~150	°C
Virtual junction temperature		-40~150	°C

The maximum limit parameters means that exceeding these values may cause irreversible damage to the device. Under these conditions, it is not conducive to the normal operation of the device. The continuous operation of the device at the maximum allowable rating may affect the reliability of the device. The reference point for all voltages is ground.

MODE TRANSITIONS

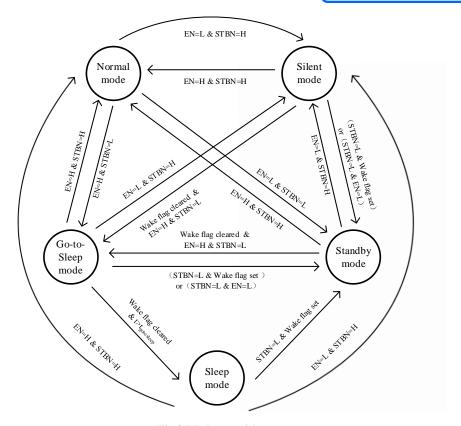


Fig 2 Mode transitions

Note: Valid VCC, VIO and VBAT voltages are present.

OPERATING MODE

Normal mode

The power supply is valid, both EN and STBN are set to high level, the device will enter the normal mode. In normal mode, the driver and high-speed receiver are enabled, the driver converts the digital input signal on the TXD to the bus analog level, while the receiver monitors the bus level and reacts it to the RXD. INH will be pulled high in normal mode.

Silent mode

The power supply is valid, setting EN to low level and STBN to high level, the device enters silent mode. The silent mode may also be referred to as a listen-only mode or a receive-only mode. In this mode, the driver is disabled, the high-speed receiver is enabled, the dominant and recessive signals of CANH and CANL are reflected to the RXD through the receiver. The bus will be biased to 0.5VCC, and INH will be pulled high.

Standby mode

The power supply is valid, and both EN and STBN are set to low level, and the device enters standby mode. Standby mode is a low-power mode in which the driver and high-speed receiver are disabled, INH is pulled high, and the device can still detect local wake-up and remote wake-up events. In addition, VBAT brownout can also enter standby mode, but the device does not detect wake-up events.

Go-to-Sleep mode

The power supply is valid, EN is set high, and STBN is set low. When $t < t_{go-to-sleep}$, the device will enter Go-to-Sleep mode. Go-to-Sleep mode is a transition mode that jumps to sleep mode. The working state of the device is consistent with the standby mode, the driver and high-speed receiver are disabled, and INH is pulled high. When entering this mode for longer than $t_{go-to-sleep}$, a transition to sleep mode occurs and INH goes to a high-impedance state.

Sleep mode

The power supply is valid, EN is set high, STBN is set low, when t>tgo-to-sleep can enter sleep mode. Sleep mode is a working mode with the lowest power consumption. In sleep mode, the driver and high-speed receiver are disabled, and the output port INH is in a high-impedance state, which can instruct to turn off the external voltage regulator, and the VCC power supply of the transceiver and MCU will not be available. In this state, SIT1043 maintains power supply through the battery pin VBAT, so as to ensure the monitoring work of local wake-up and remote wake-up. In addition, when the power supply VCC or VIO is under-voltage, and the under-voltage duration is longer than tDETUVD, the device will also enter sleep mode, INH is in a high-impedance state, and a local wake-up or remote wake-up event can cause INH to be pulled high.

FUNCTION MODE TABLE

VCC or VIO	VABT	EN	STBN	WAKE -UP FLAG	MODE	DRIV- ER	HIGH SPEED RECEI- VER	LOW POWER RECEI- VER	RXD	BUS STAT- US	INH
normal	normal	Н	Н	X	normal	enable	enable	disable	follow the bus	VCC/2	Н
normal	normal	L	Н	X	silent	disable	enable	disable	follow the bus	VCC/2	Н
normal	normal	Н	L	clear	go-to- sleep	disable	disable	enable	Н	GND	Н
normal	normal	Н	L	clear	sleep	disable	disable	enable	Н	GND	Z
normal	normal	Н	L	set up	standby	disable	disable	enable	L	GND	Н
normal	normal	L	L	clear	standby	disable	disable	enable	Н	GND	Н
normal	normal	L	L	set up	standby	disable	disable	enable	L	GND	Н
under voltage	normal	X	X	X	standby	disable	disable	enable	Н	GND	Z
normal	under voltage	X	X	X	standby	disable	disable	disable	Н	Z	Н

Note: H=high level; L=low level; Z=high impedance; X=irrelevant

DRIVE STATUS TABLE

MODE	TVD INDITE	BUS O	BUS STATE	
MODE	TXD INPUT	CANH	CANL	BUSSIAIE
	L	Н	L	Dominate
Normal mode	H or Open	Z	Z	Bus biased to VCC/2
Silent mode	X	Z	Z	Bus biased to VCC/2
Standby mode	X	Z	Z	Bus biased to GND
Go-to-Sleep mode	X	Z	Z	Bus biased to GND
Sleep mode	X	Z	Z	Bus biased to GND

Note: H=high level; L=low level; Z=high impedance; X=irrelevant

RECEIVER FUNCTION TABLE

MODE	BUS DIFFERENTIAL INPUT Vod=CANH-CANL	BUS STATE	RXD OUTPUT
Normal mode	V _{OD} ≥0.9V	Dominate	L
and Silent mode	$0.9V > V_{OD} > 0.5V$?	X
and Stient mode	V _{OD} ≤0.5V	Recessive	Н
Standby mode,	V _{OD} ≥1.15V	Dominate	H,
Go-to-Sleep mode	$1.15V > V_{OD} > 0.4V$?	L when the wake-up
and Sleep mode	V _{OD} ≤0.4V	Recessive	flag set

Note: H=high level; L=low level; ?=uncertain; Valid VCC, VIO and VBAT voltages are present.

INTERNAL FLAG SIGNAL

FLAG SIGNAL	REASON FOR APPEARING	EXTERNAL INDICATION	FLAG SIGNAL CLEAR	NOTE
Power-on flag	VBAT power-on	Enter silent mode (from standby mode, Go-to-sleep mode, sleep mode) ERRN=L	Enter normal mode	
Wake-up request flag	Remote wake-up, local wake-up, initial power-on	Enter standby mode, Go-to-sleep mode, sleep mode ERRN=RXD=L	Enter normal mode, VCC or VIO undervoltage	
Wake-up source flag ⁽¹⁾	Remote wake-up, local wake-up, initial power-on	Enter normal mode: ERRN=L indicates local wake-up, ERRN=H indicates remote wake-up	TXD transitions (2) in normal mode, leaving normal operating mode, VCC or VIO undervoltage	The establishment of the power-up flag sets the wake-up source flag
UVD _{NOM}	VCC undervoltage	No external indication	VCC recovers, the wake-up request flag appears	
undervoltage flag	VIO undervoltage	No external indication	VIO recovers, the wake-up request flag appears	
UVD _{VBAT} undervoltage flag	VBAT undervoltage	No external indication	VBAT recovers	
Bus short circuit flag	BUS shorted to either power supply or GND	Only in normal mode ERRN=L (3)	Leave normal mode	If the short circuit time is less than 4 TXD dominant and recessive transitions will not be detected
Local error flag	TXD dominant timeout	When entering silent mode from normal mode ERRN=L	RXD=L&TXD=H; enter normal mode	Once a TXD dominant timeout occurs, the drive will be disabled

		A short circuit of
TXD shorted to		TXD to RXD
RXD		occurs, the driver
		will be disabled
		A bus timeout
Bus dominant	RXD=H; enter	occurred and the
timeout	normal mode	drive is still
		enabled
	The junction	
	temperature returns	
	to normal and	In the event of an
Orion toman anothing	RXD=L&TXD=H;	overtemperature
Over temperature	the junction	condition, the
protection	temperature returns	driver will be
	to normal and jumps	disabled
	back to normal	
	operation mode	

- (1) The wake-up source flag will only identify the first wake-up request signal;
- (2) There are 4 dominant-recessive transitions of TXD, and each dominant-recessive period of this transition is at least 4µs;
- (3) ERRN can indicate the bus short-circuit flag after 4 TXD dominant-recessive transitions (each dominant-recessive cycle last at least 4µs)

The device carries out system diagnosis through the above series of flag signals and indicates the cause of the failure. The MCU can judge the internal working state of the system or the cause of the fault through some mode switching and the indication of the transceiver chip ERRN and RXD pins.

Power-on flag

The power-on flag refers specifically to the power-on event of the battery power supply VBAT. The power-on flag is set when VBAT returns to normal operating voltage from a voltage lower than $V_{UVDVBAT}$. Once the device enters silent mode from standby or sleep mode, ERRN is pulled low to indicate that the power-on flag is set. When entering normal operating mode, the power-on flag will be cleared. The power-on flag clears the UVD_{NOM} undervoltage flag and sets the wake-up request flag and wake-up source flag.

Wake-up request flag

SIT1043 can realize low-power wake-up function in two ways: local wake-up and remote wake-up.

Local wake-up

SIT1043 realizes the function of local wake-up through the WAKE port. In standby mode or sleep mode, as long as there is a valid rising or falling edge on the WAKE pin, it will be detected as a local wake-up event.

A valid rising edge means that the voltage of the WAKE port jumps from a voltage lower than $V_{th(WAKE)}$ to a voltage higher than $V_{th(WAKE)}$, and the duration of this jump is longer than $t_{wake(local)}$, which can be considered as a valid rising edge, as shown in Figure 3; a valid falling edge is when the voltage at the WAKE port transitions from a voltage above $V_{th(WAKE)}$ to a voltage below $V_{th(WAKE)}$, and the duration of this transition is greater than $t_{wake(local)}$, which can be considered as a valid falling edge, as shown in Figure 4. Any transitions of duration less than $t_{wake(local)}$ and transitions that do not cross the threshold voltage $V_{th(WAKE)}$ will be filtered out.

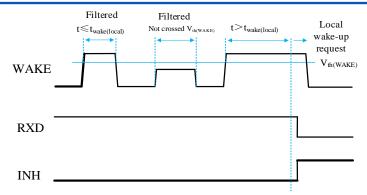


Fig 3 Local wake-up for WAKE rising edge

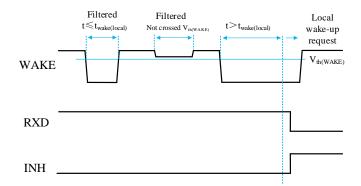


Fig 4 Local wake-up for WAKE falling edge

Remote wake-up

The SIT1043 implements a remote wake-up function through a low-power receiver to inform the MCU that the bus has been activated and the node should resume normal operation. In sleep mode, when a valid remote wake-up pattern (WUP) appears, the device will wake up and jump to standby mode, RXD will be pulled low and INH will be pulled high.

According to ISO11898-2:2016, the complete WUP consists of: a filtered dominant level (duration greater than $t_{wake(dom)}$), a filtered recessive level (duration greater than $t_{wake(rec)}$) and another filtered dominant level flat (duration greater than $t_{wake(dom)}$). This dominant-recessive-dominant level signal must appear within $t_{wake(timeout)}$ time, otherwise the internal wake-up logic will be reset and restart the monitoring of the bus.

The RXD pin will remain high until the wake-up event is triggered. The above mentioned dominant and recessive levels will be ignored (filtered out) if the duration is lower than t_{wake(busdom)} and t_{wake(busree)}. A wake-up event will not be responded when any of the following events occurs while a valid wakeup pattern is received:

- (1) The device switches to the normal working mode;
- (2) The complete wake-up request frame is not received within the twake(timeout);
- (3) VCC or VIO undervoltage is detected (UVD_{NOM} flag signal is set).

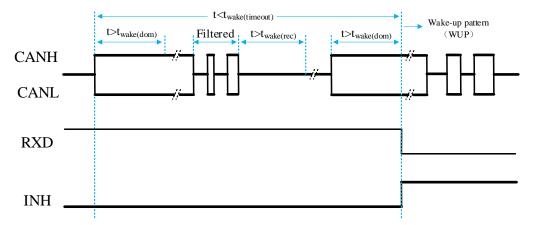


Fig 5 Remote wake-up diagram

Wake-up source flag

SIT1043 can identify the wake-up source through the wake-up source flag, and the wake-up source flag can be represented by the level of the ERRN pin when the chip enters the normal mode. If the wake-up flag is generated by the local wake-up request given by the WAKE pin, the ERRN pin is low level after jumping to the normal operating mode. Conversely, if the ERRN pin is high, it can indicate the remote wake-up signal given by the CAN bus. In normal mode, after the TXD port transmits four explicit and implicit transitions, if a bus short-circuit flag is generated, the wake-up source flag will be overwritten. The chip leaving the normal operating mode also clears the wake-up source flag. This flag is also generated on initial power-on.

UVD_{NOM} undervoltage flag

The SIT1043 has an undervoltage detection function on the power supply VCC and VIO, which can set the UVD_{NOM} undervoltage flag and place the device in a protected state. When VCC is lower than its undervoltage threshold V_{UVDVCC} and the undervoltage time is greater than t_{DETUVD} or VIO is lower than its undervoltage threshold V_{UVDVIO} and the undervoltage time is greater than t_{DETUVD}, by setting the UVD_{NOM} undervoltage flag, the device will be forced to enter sleep mode and wake up locally Still normal with remote wake-up, INH is high impedance and further instructs the external regulator to shut down, which saves unnecessary power consumption and avoids the bus from being disturbed. The UVD_{NOM} undervoltage flag is cleared when VCC is higher than V_{UVDVCC} and the recovery time is greater than t_{RECUVD} or VIO is higher than V_{UVDVIO} and the recovery time is greater than t_{DETUVD}. At the same time, the establishment of the wake-up request flag and the power-up flag and the low-to-high transition of STB will clear the UVD_{NOM} undervoltage flag.

UVD_{VBAT} undervoltage flag

The battery power VBAT of the SIT1043 also has an undervoltage detection function. When VBAT is lower than $V_{UVDVBAT}$, the $UVDV_{BAT}$ undervoltage flag is set, the device enters standby mode, and the transceiver will be disconnected from the bus (zero load). When the voltage at pin VBAT is restored, the $UVDV_{BAT}$ undervoltage flag is cleared and the transceiver will switch to the operating mode indicated by the logic levels on the STBN and EN pins.

Bus short circuit flag

In normal mode, if the bus is shorted to VBAT, VCC or GND, and TXD appears for 4 consecutive dominant-recessive transitions (each dominant-recessive period is at least 4µs), the bus short-circuit flag will be set, the establishment of the bus short flag is indicated by pulling ERRN low. A power cycle or the transceiver re-enters normal operating mode to clear the bus short flag.

Local error flag

SIT1043 can detect four kinds of local error events: TXD dominant timeout, TXD and RXD short circuit, bus dominant timeout, over temperature protection. Whenever any of these events occur, a local error flag is generated, and when the device transitions from normal mode to silent mode, ERRN is pulled low, indicating that a local error flag has set.

TXD dominant timeout

In normal mode, if a low level voltage on pin TXD lasts longer than the internal timer value $t_{\text{dom}(TXD)}$, the transmitter will be disabled, driving the bus into a recessive state. This prevents the bus line from being driven to a permanent dominant state (blocking all network traffic) due to a hardware or software application failure on pin TXD being forced permanently low.

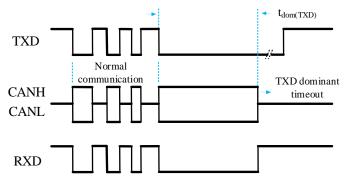


Fig.6 TXD dominant timeout diagram

TXD and RXD short circuit

SIT1043 has the protection function of short circuit between TXD and RXD, which can avoid the periodic deadlock situation of the local device. In normal mode or silent mode, if a short circuit occurs between the TXD and RXD of the device, and the duration of the short circuit exceeds t_{dom(TXD)}, the device will consider that a short circuit between TXD and RXD has occurred, the local error flag is established, and the driver will be disabled.

Bus dominant timeout

When the bus is short-circuited, if the bus has a dominant level whose duration is greater than the internal timer value $t_{\text{dom(BUS)}}$, it will be regarded as a bus dominant timeout event and a local error flag will be established.

Over temperature protection

SIT1043 has an over temperature protection function. If the junction temperature of the device exceeds the over temperature shutdown temperature $T_{j(sd)}$, the bus driver circuit will be shut down, thereby blocking the transmission path from TXD to the bus, so during thermal shutdown The level is biased in a recessive state while the rest of the chip remains functional. Because the driver tube is the main energy consuming component, turning off the driver tube can reduce the power consumption and thus reduce the chip temperature.

DC PARAMETERS

Tested under recommended operating conditions: VBAT=4.5V to 40V, VCC=4.5V to 5V, VIO=2.8V to 5.5V, T_{vj} =-40°C to 150°C. Unless otherwise stated, all typical values are measured at 25°C, supply voltage VBAT=12V, VCC =5V, VIO=5V, R_L =60 Ω .

PARAMETER	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
Power supply characte	eristics				•	
		Normal or Silent mode	15	35	70	μА
		Standby mode, VCC>4.5V,				
VBAT supply current	I_{BAT}	VIO>2.8V, INH=WAKE =VBAT	5	16	30	μΑ
		Sleep mode, VCC=VIO= INH=0V, WAKE=VBAT	5 16 30	μΑ		
	I_{CC}	Normal mode: dominant	30	48	65	mA
		Normal mode: recessive; Silent mode	3	6	9	mA
VCC supply current		Standby or Sleep mode		1	4	μΑ
		Normal mode; dominant bus short circuit, -3V<(CANH= CANL)<+18V	3	79	109	mA
		Normal mode; dominant, TXD=0V		150	500	μΑ
VIO supply current	I_{IO}	Normal recessive or Silent mode, TXD=VIO		1	2	μА
		Standby or Sleep mode		1	2	μΑ
VBAT undervoltage detection	V_{UVDVBAT}		3	3.5	4.3	V

PARAMETER	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
VCC undervoltage						
detection	V _{UVDVCC}	VBAT>4.5V	3	3.5	4.3	V
VIO undervoltage	V _{UVDVIO}	VBAT>4.5V	1.5	1.8	2.1	V
detection						
TXD Pin Characterist	ics		_		1	
HIGH-level input	I _{IH(TXD)}	TXD=VIO	-5	0	5	μA
current LOW-level input						
current	$I_{\text{IL}(\text{TXD})}$	TXD=0V	-260	-150	-30	μΑ
Leakage current when	I	VIO=0V,	-1		1	^
TXD is unpowered	$I_{\text{off(TXD)}}$	TXD=5.5V	-1		1	μΑ
HIGH-level input	$V_{ m IH}$		0.7VIO		VIO+0.3	V
voltage						
LOW-level input voltage	$V_{ m IL}$		-0.3		0.3VIO	V
RXD Pin Characterist	ics					
RXD HIGH-level	T.		10			
output current	I _{OH(RXD)}	RXD=VIO-0.4V	-12	-6	-1	mA
RXD LOW-level	I _{OL(RXD)}	RXD=0.4V,	2	6	14	mA
output current	IOL(KAD)	bus dominant		Ü	11	1111 1
STBN Pin Characteris	stics					
STBN HIGH-level	т	STBN=VIO	1	5	10	4
output current	I _{IH(STBN)}	SIBN-VIO	1	3	10	μΑ
STBN LOW-level	I _{IL(STBN)}	STBN=0V	-1		1	μΑ
output current	(-1-1)					•
Leakage current when STBN is unpowered	$I_{\text{off(STBN)}}$	VIO=0V, STBN=5.5V	-1		1	μΑ
HIGH-level input		5151, 5.5 (0.5777		1110 û û	.
voltage	$V_{ m IH}$		0.7VIO		VIO+0.3	V
LOW-level input	$ m V_{IL}$		-0.3		0.3VIO	V
voltage	▼ IL		-0.3		0.5 V10	v
EN Pin Characteristic	s					
EN HIGH-level	I _{IH(EN)}	EN=VIO	1	5	10	μΑ
output current	III(EN)	LI, VIO	1		10	μι 1
EN LOW-level output	I _{IL(EN)}	EN=0V	-1		1	μΑ
current						•

PARAMETER	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
Leakage current when EN is unpowered	I _{off(EN)}	VIO=0V, EN=5.5V	-1		1	μΑ
HIGH-level input voltage	$ m V_{IH}$		0.7VIO		VIO+0.3	V
LOW-level input voltage	V _{IL}		-0.3		0.3VIO	V
ERRN Pin Characteri	stics					
ERRN HIGH-level output current	I _{OH(ERRN)}	ERRN=VIO-0.4V	-50	-20	-4	μΑ
ERRN LOW-level input current	I _{OL(ERRN)}	ERRN=0.4V	0.1	0.5	2	mA
INH Pin Characteristi	cs					
INH HIGH-level voltage drop	$\triangle V_{\mathrm{H}}$	I _{INH} =-0.18mA	0	0.25	0.8	V
INH leakage current	I_{L}	Sleep mode	-2	0	2	μΑ
WAKE Pin Character	istics					
WAKE HIGH-level input current	I _{IH(WAKE)}	WAKE=VBAT- 1.8V	-18	10		μΑ
WAKE LOW-level input current	I _{IL(WAKE)}	WAKE=VBAT- 3.6V		10	18	μΑ
WAKE threshold voltage	V _{th(WAKE)}	STBN=0	VBAT- 3.5	VBAT- 2.5	VBAT- 1.9	V
SPLIT Pin Characteri	stics					
SPLIT output voltage	Vsplit	Normal or Silent mode, -500μA <i<sub>SPLIT <500μA</i<sub>	0.3VCC	0.5VCC	0.7VCC	V
		Normal or Silent mode, $R_L = 1 M\Omega$	0.45VCC	0.5VCC	0.55VCC	V
SPLIT leakage current	$I_{\rm L}$	Standby or Sleep mode, -58V <v<sub>SPLIT<58V</v<sub>	-3		3	μА
Temperature detection	1					
shutdown junction temperature	$T_{j(sd)}$			190		°C

PARAMETER	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
Bus Driver DC Charac	cteristics					
CANH dominant output voltage	V _{OH(D)}	Normal mode, TXD=0V,	2.75	3.5	4.5	V
CANL dominant output voltage	V _{OL(D)}	$R_L=50\Omega$ to 65Ω	0.5	1.5	2.25	V
		Normal mode, $TXD{=}0V,$ $R_L{=}50\Omega \text{ to } 65\Omega$	1.5		3	V
Bus dominant differential output voltage	$V_{\text{OD(D)}}$	Normal mode, $TXD{=}0V,$ $R_L{=}45\Omega \text{ to } 70\Omega$	1.4		3.3	V
		Normal mode, TXD=0V, R_L =2240 Ω	1.5		5	V
Bus recessive output voltage	V _{O(R)}	Normal or Silent mode, TXD=VIO, no load	2	0.5VCC	3	V
Bus recessive differential output voltage	$V_{\mathrm{OD(R)}}$	Normal or Silent mode, TXD=VIO, no load	-500		50	mV
Bus output voltage (bus biased to ground)	V _{O(S)}	Standby or Sleep mode, no load	-0.1		0.1	V
Bus differential output voltage (bus biased to ground)	V _{OD(S)}	Standby or Sleep mode, no load	-0.2		0.2	V
Transmitter dominant voltage symmetry	$V_{\text{dom}(TX)\text{sym}}$	$V_{dom(TX)sym}$ =VCC- CANH - CANL	-400		400	mV
Transmitter voltage symmetry	V _{TXsym}	V_{TXsym} = CANH + CANL, R_L =60 Ω , C_{SPLIT} =4.7nF, f_{TXD} =1MHz	0.9V _{CC}		1.1V _{CC}	V
Common mode voltage step	V _{cm(step)}	Fig 9	-150		150	mV
Peak-to-peak common mode voltage	V _{cm(p-p)}	Fig 9	-300		300	mV

PARAMETER	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
dominant short-circuit output current		Normal mode, TXD=0V, CANH= -15V to 40V	-100	-70	-40	mA
	I _{O(SC)DOM}	Normal mode, TXD=0V, CANL= -15V to 40V	40	70	100	mA
recessive short-circuit output current	I _{O(SC)} REC	Normal mode, TXD=VIO, CANH=CANL= -27V to 32V	-3		3	mA
Bus Receiver DC Char	racteristics					
differential receiver		Normal or Silent mode, -30V <v<sub>CM< 30V</v<sub>	0.5		0.9	V
threshold voltage	V _{th(RX)dif}	Standby or Sleep mode, -12V <v<sub>CM< 12V</v<sub>	0.4		1.15	V
differential receiver hysteresis voltage	V _{hys(RX)dif}	Normal or Silent mode, -30V <v<sub>CM< 30V</v<sub>	50	120	400	mV
receiver recessive	77	Normal or Silent mode, -30V <v<sub>CM< 30V</v<sub>	-3		0.5	V
voltage	$V_{\text{rec}(RX)}$	Standby or Sleep mode, -12V <v<sub>CM< 12V</v<sub>	-3		0.4	V
receiver dominant	V	Normal or Silent mode, -30V <v<sub>CM< 30V</v<sub>	0.9		8	V
voltage	V _{dom(RX)}	Standby or Sleep mode, -12V <v<sub>CM< 12V</v<sub>	1.15		8	V
leakage current	${ m I_L}$	VCC=VIO=VBAT =0V, CANH= CANL=5V	-5		5	μΑ
CANH and CANL input resistance	R _{IN}	-2V≤CANH≤7V -2V≤CANL≤7V	9	15	28	kΩ

SIT1043

PARAMETER	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
CANH, CANL differential input resistance	R _{ID}	-2V≤CANH≤7V -2V≤CANL≤7V	19	30	52	kΩ
CANH, CANL input resistance deviation	$\triangle R_{\mathrm{IN}}$	0V≤CANH≤5V 0V≤CANL≤5V	-3		3	%
CANH, CANL common-mode input capacitance	C _{IN}	TXD=VIO		24		pF
CANH, CANL differential input capacitance	C_{ID}	TXD=VIO		12		pF

AC PARAMETERS

Unless otherwise stated, all typical values are measured at 25°C, supply voltage VBAT=12V, VCC =5V, VIO=5V, R_L =60 Ω , C_{BUS} =100pF, C_{RXD} =15pF.

PARAMETER	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT	
Driver AC Characteristics							
delay time from TXD to bus dominant	$t_{d(TXD\text{-busdom})}$	Normal mode, Fig 7		45		ns	
delay time from TXD to bus recessive	$t_{d(TXD\text{-busrec})}$	Normal mode, Fig 7		55		ns	
Differential output signal rise time	$t_{r(\mathrm{BUS})}$	Normal mode, Fig 7		45		ns	
Differential output signal fall time	$t_{ m f(BUS)}$	Normal mode, Fig 7		45		ns	
TXD dominant time-out	$t_{\text{dom}(TXD)}$	TXD=0, Fig 6	0.3	0.6	1.2	ms	
Receiver AC Characte	ristics						
delay time from bus dominant to RXD	$t_{d(busdom-RXD)}$	Normal or Silent mode, Fig 7		45		ns	
delay time from bus recessive to RXD	t _{d(busrec-RXD)}	Normal or Silent mode, Fig 7		45		ns	
RXD signal rise time	$t_{r(RXD)}$	Normal or Silent mode, Fig 7		8		ns	
RXD signal fall time	$t_{ m f(RXD)}$	Normal or Silent mode, Fig 7		8		ns	
bus dominant time-out time	$t_{\text{dom(BUS)}}$	V _{OD} >0.9V	0.3	0.6	1.2	ms	
TXD to RXD loop dela	ny						
delay time from TXD LOW to RXD LOW	t_{loop1}	Normal mode, Fig 7	40		160	ns	
delay time from TXD HIGH to RXD HIGH	t_{loop2}	Normal mode, Fig 7	40		175	ns	

PARAMETER	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
CAN FD Bit time						
Bit time of BUS	,	t _{bit(TXD)} =500ns, Fig 8	435		530	ns
output pin	t _{bit(BUS)}	t _{bit(TXD)} =200ns, Fig 8	155		210	ns
Bit time of RXD	t	t _{bit(TXD)} =500ns, Fig 8	400		550	ns
output pin	t _{bit(RXD)}	t _{bit(TXD)} =200ns, Fig 8	120		220	ns
BUS and RXD output		$\Delta t_{rec} = t_{bit(RXD)}$, $t_{bit(BUS)}$; $t_{bit(TXD)} = 500 \text{ns}$	-65		40	ns
bit time difference	$\Delta t_{ m rec}$	$\begin{array}{c} \Delta t_{rec=} \; t_{bit(RXD)\text{-}} \\ t_{bit(BUS)}; \\ t_{bit(TXD)} = 200 ns \end{array}$	-45		15	ns
Device Switching Char	racteristics					
hold time	t _{go_to_sleep}	EN=VIO, STBN=0	20		60	μs
bus dominant wake- up time	t _{wake(dom)}	Standby or Sleep mode	0.5		1.8	μs
bus recessive wake-up time	$t_{\mathrm{wake(rec)}}$	Standby or Sleep mode	0.5		1.8	μs
bus wake-up time-out time	$t_{\mathrm{wake(timeout)}}$		0.3	0.6	1.2	ms
local wake-up time	t _{wake(local)}	Standby or Sleep mode	5	25	50	μs
undervoltage detection time	t _{DETUVD}		100		350	ms
undervoltage recovery time	t _{RECUVD}		1		5	ms
STBN and EN pin filter time	$t_{\mathrm{filter_IO}}$		1		4	μs

TIMING WAVEFORM

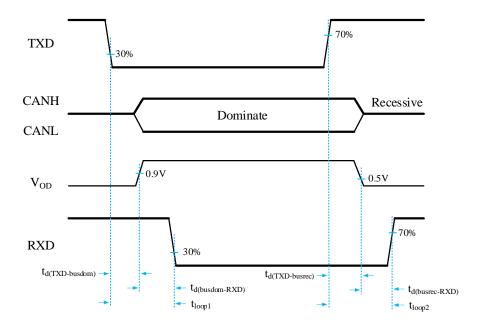


Fig 7 CAN transceiver timing diagram

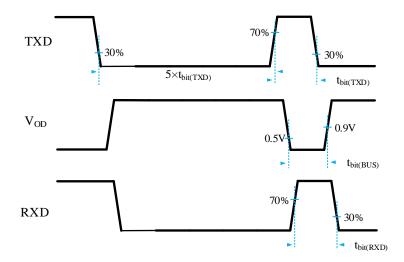


Fig 8 tbit timing diagram

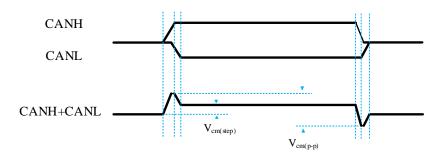


Fig 9 CAN bus common-mode voltage (according to SAE 1939-14)

TYPICAL APPLICATION CIRCUIT

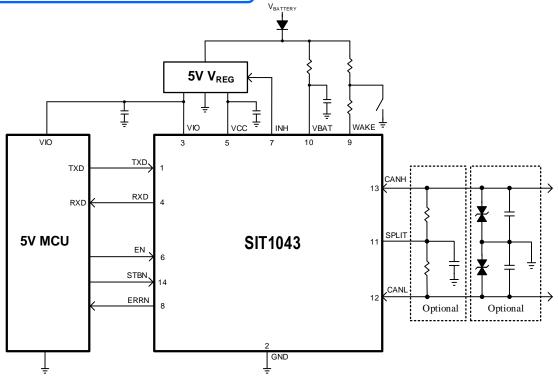
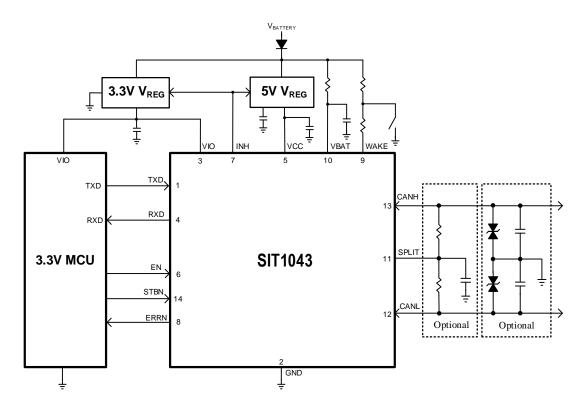
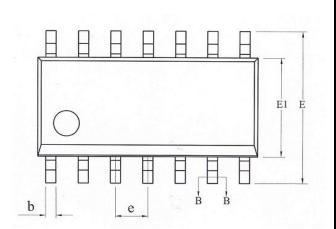
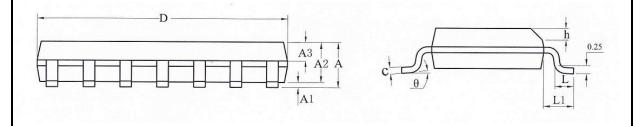


Fig 10 Typical application with 5V MCU $\,$



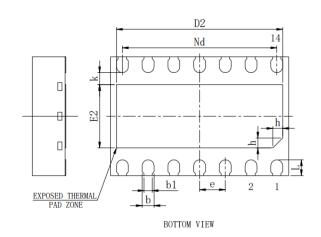

Fig 11 Typical application with 3.3V MCU

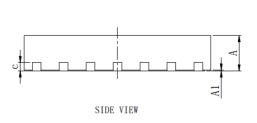


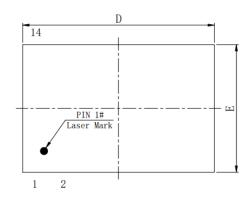
SOP14 DIMENSIONS

PACKAGE SIZE

arn mor	MILLIMETER			
SYMBOL	MIN	NOM	MAX	
A	-	-	1.75	
A1	0.05	-	0.225	
A2	1.30	1.40	1.50	
A3	0.60	0.65	0.70	
b	0.39	-	0.47	
b1	0.38	0.41	0.44	
c	0.20	-	0.24	
c1	0.19	0.20	0.21	
D	8.55	8.65	8.75	
Е	5.80	6.00	6.20	
E1	3.80	3.90	4.00	
e	1.27BSC			
h	0.25	-	0.50	
L	0.50	-	0.80	
L1	1.05REF			
θ	0	-	8°	






DFN14 DIMENSIONS

PACKAGE SIZE

avn mov	MILLIMETER			
SYMBOL	MIN NOM		MAX	
A	0.80	0.85	0.90	
A1	0	0.02	0.05	
b	0.25	0.30	0.35	
b1		0.21REF		
с	0.203REF			
D	4.40	4.50	4.60	
D2	4.10	4.20	4.30	
e		0.65BSC		
Nd	3.90BSC			
Е	2.90	3.00	3.10	
E2	1.50	1.60	1.70	
L	0.35	0.40	0.45	
h	0.20	0.25	0.30	
K	0.30REF			

TOP VIEW

ORDERING INFORMATION

TYPE NUMBER	PACKAGE	PACKING
SIT1043T	SOP14	Tape and reel
SIT1043TK	DFN4.5×3-14	Tape and reel

SOP14 package is 2500 pieces/disc. DFN4.5×3-14 package is 3000 pieces/disc.

Important statement

SIT reserves the right to change the above-mentioned information without prior notice.

REVISION HISTORY

VERSION	MODIFY THE CONTENT	REVISION
NUMBER	MODIFT THE CONTENT	
V1.0	Initial version	2022.04
V1.1	Corrected STB_N to STBN in working mode description Modified the parameters of the WAKE pin Modified the propagation delay parameters from TXD to RXD Modified the parameters of remote wake-up time	2022.06