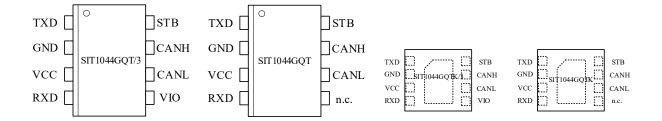


FEATURES

- ➤ Compatible with the ISO 11898-2:2024 and SAE J2284-1~ SAE J2284-5 standard
- ➤ AEC-Q100 qualified
- > Thermally protected
- ≥ ±42V BUS Protection
- > Transmit Data (TXD) dominant time-out function
- ➤ Low-power standby mode with wake-up function
- > SIT1044GQT/3 and SIT1044GQTK/3 I/O pins support 1.8V, 3.3V and 5V MCU
- Undervoltage protection on pins VCC and VIO
- > Timing guaranteed for data rates up to 5 Mbps in the CAN FD fast phase
- ➤ High ElectroMagnetic Immunity
- ➤ Unpowered state disengages from the bus
- Available in SOP8 and DFN3*3-8 packages. DFN3*3-8 with improved Automated Optical Inspection (AOI) capability.

DESCRIPTION


SIT1044GQ is an interface chip used between the CAN protocol controller and the physical bus. It can be used for in-vehicle, industrial control and other fields. It supports 5Mbps (CAN FD), and has the ability to perform differential signal transmission between bus and the CAN protocol controller.

SIT1044GQ is fully compatible with the SIT1044Q and other family products. SIT1044GQ features improved bus signal symmetry and lower electromagnetic radiation performance.

PARAMETER	SYMBOL	CONDITIONS	VALUE	UNIT
Bus supply voltage	VCC	4.5	5.5	V
MCU side port supply voltage	VIO	1.7	5.5	V
CANH/CANL input or output voltage	V_{can}	-42	+42	V
Bus differential voltage	$V_{ m diff}$	1.5	3.0	V
Virtual junction temperature	T_j	-40	150	°C

PIN CONFIGURATION

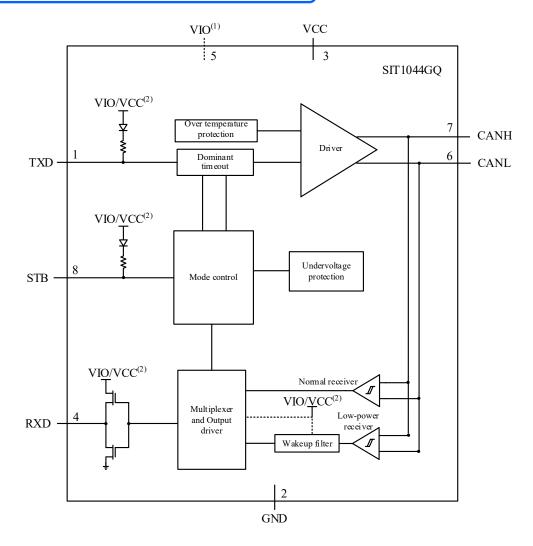
PIN DESCRIPTION

PIN	SYMBOL	DESCRIPTION	
1	TXD	transmit data input	
2	GND	ground	
3	VCC	supply voltage	
4	RXD	receive data output	
5	VIO	transceiver I/O level conversion power supply voltage (SIT1044GQT/3, SIT1044GQTK/3)	
3	n.c.	Not connected in SIT1044GQT and SIT1044GQTK version.	
6	CANL	LOW-level CAN-bus line	
7	CANH	HIGH-level CAN-bus line	
8	STB	standby mode control input, low level is high speed mode	

Note: The metal pad on the back of the DFN3*3-8 package is recommended to be grounded.

LIMITING VALUES

PARAMETER	SYMBOL	CONDITIONS	VALUE	UNIT
Supply voltage	VCC, VIO	pins VCC, VIO	-0.3~+7	V
MCU side port	$V_{TXD}, V_{RXD}, V_{STB}$	pins TXD, RXD, STB	-0.3~+7	V
Bus side input voltage	VCANL, VCANH	pins CANH, CANL	-42~+42	V
Bus differential breakdown voltage	V _{CANH-CANL}		-42~+42	V
		IEC 61000-4:2: pins CANH, CANL	-6~+6	kV
	$ m V_{ESD}$	HBM, AEC Q100-002		
ElectroStatic Discharge		All pins	-4~+4	kV
		Pins CANH and CANL	-8~+8	kV
		CDM, all pins	-2000~+2000	V
		Pulse	-100	V
To a start a Maria		Pulse 2a	75	V
Transient voltage	$ m V_{trt}$	Pulse 3a	-150	V
		Pulse 3b	100	V
Storage temperature	T _{stg}		-55~150	°C
Virtual junction temperature	Tj		-40~150	°C


The maximum limit parameters mean that exceeding these values may cause irreversible damage to the device. Under these conditions, it is not conducive to the normal operation of the device. The continuous operation of the device at the maximum allowable rating may affect the reliability of the device. The reference point for all voltages is ground.

THERMAL CHARACTERISTICS

PARAMETER	SYMBOL	CONDITIONS	VALUE	UNIT
D.	Junction-to-ambient	SOP8	95	°C/W
$R_{ heta JA}$	thermal resistance	DFN3*3-8	65	°C/W
D.	Junction-to-case thermal	SOP8	46	°C/W
$ m R_{ heta JC}$	resistance	DFN3*3-8	35	°C/W

INTERNAL CIRCUIT BLOCK DIAGRAM

- (1) VIO is only available in SIT1044GQT/3 and SIT1044GQTK/3 version, pin 5 is not connected in SIT1044GQT and SIT1044GQTK.
- (2) VIO is in SIT1044GQT/3 and SIT1044GQTK/3 version and VCC is in SIT1044GQT and SIT1044GQTK.

STATIC CHARACTERISTICS

Unless specified otherwise; all values are tested in recommended operating conditions: T_j =-40°C~150°C, VCC=4.5V~5.5V, VIO=1.7V~5.5V (SIT1044GQT/3 and SIT1044GQTK/3), R_L =60 Ω .

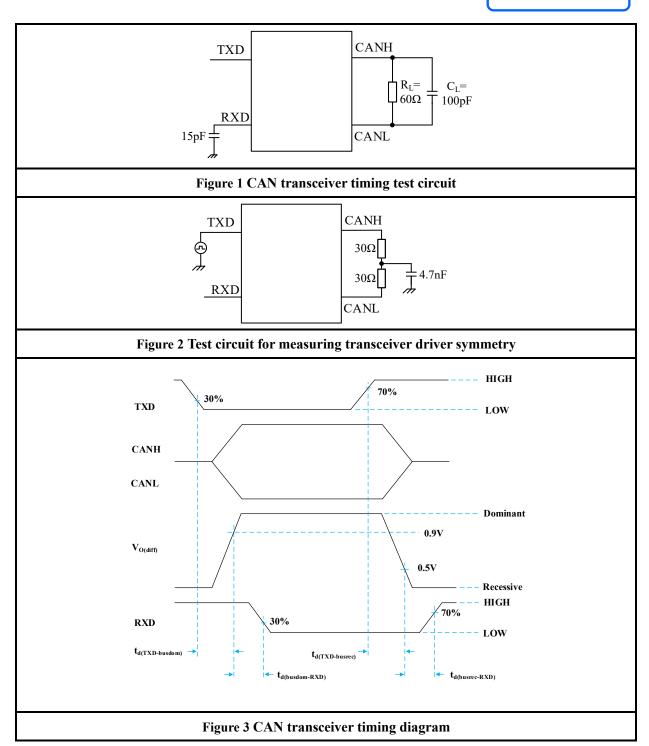
PARAMETER	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
Supply: pin VCC					•	
Supply voltage	VCC		4.5	-	5.5	V
Standby undervoltage detection voltage	$V_{uvd(stb)} \\$		3.4	-	4.5	V
Standby undervoltage hysteresis voltage	$V_{uvhys(stb)} \\$		50	-	-	mV
Switch-off undervoltage detection voltage	$V_{uvd(swoff)} \\$	SIT1044GQT/3 and SIT1044GQTK/3	1.2	-	1.7	V
-		Normal mode; dominant; t <tto(dom)txd; vtxd="0V</td"><td>-</td><td>40</td><td>70</td><td>mA</td></tto(dom)txd;>	-	40	70	mA
VCC supply current	Icc	Normal mode; dominant; short circuit on bus lines; $V_{TXD}=0V$; $-3V < (V_{CANH}=V_{CANL}) < +40V$	-	-	125	mA
11 5		Normal mode; recessive; $V_{TXD} = VIO^{(1)}$	-	5.1	10	mA
		Standby mode; SIT1044GQT/3 and SIT1044GQTK/3	-	-	2	μΑ
I/O level adapter supply;	pin VIO (SIT10	044GQT/3 and SIT1044GQTK/	3)			
Supply voltage	VIO		1.7		5.5	V
Switch-off undervoltage detection voltage	$V_{uvd(swoff)} \\$		1.2		1.7	V
-		Normal mode; dominant; V _{TXD} =0V		220	760	μΑ
VIO supply current	IIO	Normal mode; recessive; V _{TXD} =VIO ⁽¹⁾		110	460	μΑ
		Standby mode			24	μΑ
Pin TXD characteristics						
HIGH-level input voltage	V _{IH}	SIT1044GQT/3 and SIT1044GQTK/3	0.7VIO ⁽¹⁾	-	-	V
LOW-level input voltage	$ m V_{IL}$	SIT1044GQT/3 and SIT1044GQTK/3	-	-	0.3VIO ⁽¹⁾	V
Hysteresis voltage	$V_{hys(TXD)} \\$	SIT1044GQT/3 and SIT1044GQTK/3	50	-	-	mV
Pull-up resistance	R_{pu}	2.8V <vio<5.5v< td=""><td>20</td><td>-</td><td>80</td><td>kΩ</td></vio<5.5v<>	20	-	80	kΩ
Unpowered leakage current on pin TXD	Io(off)	VCC=VIO=0V TXD=5V	-1		1	μΑ
Input capacitance	$C_{\rm i}$	(2)	-	-	10	pF
Pin RXD characteristics						
HIGH-level output current	Ioh(RXD)	V _{RXD} =VIO-0.4V ⁽¹⁾	-10	-	-1	mA
LOW-level output current	Iol(RXD)	Bus dominant; V _{RXD} =0.4V	1	-	10	mA
Pin STB characteristics						
HIGH-level input voltage	V _{IH}	SIT1044GQT/3 and SIT1044GQTK/3	0.7VIO ⁽¹⁾	-	-	V

PARAMETER	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
LOW-level input voltage	V _{IL}	SIT1044GQT/3 and SIT1044GQTK/3	-	-	0.3VIO ⁽¹⁾	V
Hysteresis voltage	V_{hys}	SIT1044GQT/3 and SIT1044GQTK/3	50	-	-	mV
Pull-up resistance	R_{pu}	2.8V <vio<5.5v< td=""><td>20</td><td>-</td><td>80</td><td>kΩ</td></vio<5.5v<>	20	-	80	kΩ
Unpowered leakage current on pin STB	I _O (off)	VCC=VIO=0V; STB=5V	-1		1	μΑ
Input capacitance	$C_{\rm i}$	(2)	-	-	10	pF
Overtemperature protect	tion					
Shutdown junction temperature	$T_{j(sd)} \\$		-	190	-	°C
Release shutdown junction temperature	T_{hys}		-	20	-	°C
Bus lines; pins CANH an	d CANL					
Dominant output voltage on pin CANH	V _{O(dom)}	t <t<sub>to(dom)TXD; V_{TXD}=0V;</t<sub>	2.89	3.55	4.26	V
Dominant output voltage on pin CANL	· O(dolli)	R_L =50 Ω to 65 Ω	0.77	1.45	2.13	V
Transmitter voltage symmetry	$ m V_{TXsym}$	V _{TXsym} =V _{CANH} +V _{CANL} ; C _{SPLIT} =4.7nF; f _{TXD} =250kHz, 1MHz or 2.5MHz	0.9VCC	-	1.1VCC	V
Common mode voltage step	$V_{\text{cm}(\text{step})}$	(2)	-150	-	150	mV
Peak-to-peak common mode voltage	V _{cm(p-p)}	(2)	-300	-	300	mV
		Normal mode; $t < t_{to(dom)TXD}$; $V_{TXD} = 0V$; $R_L = 50\Omega$ to 65Ω	1.5	-	3	V
		Normal mode; t $<$ t _{to(dom)TXD} ; V_{TXD} = $0V$; R_L = 45Ω to 70Ω	1.4	-	3.3	V
Differential output voltage	$V_{O(\text{diff})}$	Normal mode; dominant; $t < t_{to(dom)TXD}; V_{TXD} = 0V;$ $R_L = 2240\Omega$	1.5	-	5	V
		Normal mode; recessive; V _{TXD} =VIO ⁽¹⁾ ; No load	-50	-	+50	mV
		Normal mode; recessive; V_{TXD} =VIO ⁽¹⁾ ; R_L =60 Ω	-50	-	+50	mV
		Standby mode; dominant; No load	-0.2	-	+0.2	V
		Normal mode; V _{TXD} =VIO ⁽¹⁾ ; No load	2	0.5VCC	3	V
Output voltage	$V_{O(\text{rec})}$	Normal mode; $V_{TXD} = VIO^{(1)};$ $R_L = 60\Omega$	2.2	0.5VCC	2.8	V
		Standby mode; No load	-0.1	-	+0.1	V
Differential receiver	Vicessia	Normal mode; -12V≤V _{CANH} ≤12V -12V≤V _{CANL} ≤12V	0.5	-	0.9	V
threshold voltage	$V_{ m th(RX)diff}$	Standby mode; -12V≤V _{CANH} ≤12V -12V≤V _{CANL} ≤12V	0.4	-	1.1	V
Receiver recessive voltage	$V_{\text{rec}(RX)}$	Normal mode; -12V≤V _{CANH} ≤12V -12V≤V _{CANL} ≤12V	-4	-	0.5	V

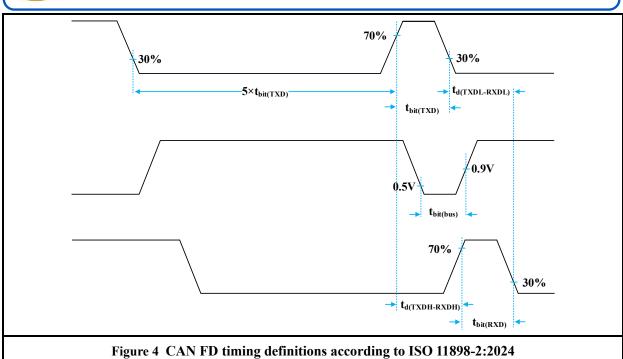
PARAMETER	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
		Standby mode; -12V≤V _{CANH} ≤12V -12V≤V _{CANL} ≤12V	-4	-	0.4	V
Receiver dominant	$V_{ m dom(RX)}$	Normal mode; -12V≤V _{CANH} ≤12V -12V≤V _{CANL} ≤12V	0.9	-	9	V
voltage	v dom(RX)	Standby mode; -12V≤V _{CANH} ≤12V -12V≤V _{CANL} ≤12V	1.1	-	9	V
Differential receiver hysteresis voltage	$V_{hys(RX)dif} \\$	Normal mode; -12V≤V _{CANH} ≤12V -12V≤V _{CANL} ≤12V	-	60	-	mV
Short-circuit output current	I _{O(SC)}	V_{CANH} =-15V to 40V; V_{CANL} =-15V to 40V		-	115	mA
Recessive short-circuit output current	IO(SC)rec	V _{CANH} =-27V to 32V; V _{CANL} =-27V to 32V; V _{TXD} =VIO for t>t _{d(TXD} -busrec)end	-5		5	mA
Leakage current	IL	VCC=VIO= 0V or pins shorted to GND via 47k Ω ; T_j <105°C V_{CANH} = V_{CANL} =5V	-10		10	μΑ
Input resistance	R_{i}	-2V≤V _{CANH} ≤7V -2V≤V _{CANL} ≤7V	25	40	50	kΩ
Input resistance deviation	$\triangle R_i$	0V≤V _{CANH} ≤5V 0V≤V _{CANL} ≤5V	-3		3	%
Differential input resistance	R_{ID}	-2V≤V _{CANH} ≤7V -2V≤V _{CANL} ≤7V	50	80	100	kΩ
Common-mode input capacitance	C _{i(cm)}	(2)	-	-	24	pF
Differential input capacitance	Ci(diff)	(2)	-	-	12	pF

DYNAMIC CHARACTERISTICS

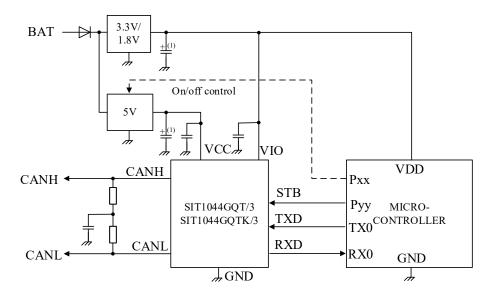
Unless specified otherwise; all values are tested in recommended operating conditions: T_j =-40°C~150°C, VCC=4.5V~5.5V, VIO=1.7V~5.5V (SIT1044GQT/3 and SIT1044GQTK/3), R_L =60 Ω .


Parameter	Symbol	mbol Conditions		Тур.	Max.	Unit	
CAN timing characteris	stics; t _{bit(TXD)} ≥2001	ns; Figure 1, Figure 3 and Figu	re 4		l.		
Delay time from TXD to bus dominant	td(TXD-busdom)	Normal mode	-	-	80	ns	
Delay time from TXD to bus recessive	td(TXD-busrec)	Normal mode	-	-	80	ns	
Delay time from bus dominant to RXD	$t_{d(busdom\text{-}RXD)}$	Normal mode	-	1	110	ns	
Delay time from bus recessive to RXD	$t_{d(busrec-RXD)}$	Normal mode	-	-	110	ns	
Delay time from TXD LOW to RXD LOW	$t_{d(TXDL\text{-}RXDL)}$	Normal mode	40	-	190	ns	
Delay time from TXD HIGH to RXD HIGH	$t_{d(TXDH\text{-}RXDH)}$	Normal mode	40	-	190	ns	
CAN FD timing charac	teristics; Figure 1	and Figure 4					
Transmitted recessive		2Mbit/s (t _{bit(TXD)} =500ns)	455	-	510	ns	
bit width	tbit(bus)	5Mbit/s (t _{bit(TXD)} =200ns)	155	-	210	ns	
Division in DVD		2Mbit/s (t _{bit(TXD)} =500ns)	420	-	520	ns	
Bit time on pin RXD	t _{bit(RXD)}	5Mbit/s (t _{bit(TXD)} =200ns)	120	-	220	ns	
Transmitted recessive bit width deviation	$\Delta t_{bit(BUS)}$	Δt _{bit(BUS)} =t _{bit(bus)} - t _{bit(TXD)}	-45	-	10	ns	
Receiver timing symmetry	Δt_{rec}	$\Delta t_{rec} = t_{bit(RXD)} - t_{bit(bus)}$	-45	-	15	ns	
Received recessive bit width deviation	$\Delta t_{bit(RXD)}$	$\Delta t_{bit(RXD)} = t_{bit(RXD)} - t_{bit(TXD)}$	-80	1	20	ns	
TXD dominant time-ou	t time						
TXD dominant time- out time	$t_{to(dom)TXD}$	VTXD=0V; Normal mode	0.8	-	9	ms	
Bus wake-up times; pins CANH and CANL; Figure 10							
Bus dominant wake-up time	$t_{\mathrm{wake(busdom)}}$	Standby mode	0.5	-	1.8	μs	
Bus recessive wake-up time	twake(busrec)	Standby mode	0.5	1	1.8	μs	
Bus wake-up time-out time	tto(wake)bus	Standby mode	0.8	-	9	ms	
Mode transitions							
RXD start up time	t _{startup(RXD)} (2)	Switches to standby mode after waking up	4	-	50	μs	

⁽¹⁾ VIO only in SIT1044GQT/3 and SIT1044GQTK/3 version.


⁽²⁾ Guaranteed by design, not tested in production.

TEST CIRCUIT



APPLICATION INFORMATION

(1) Optional, depends on regulator.

Figure 5 Typical SIT1044GQT/3 and SIT1044GQTK/3 application with a 3.3V/1.8V microcontroller

(1) Optional, depends on regulator.

Figure 6 Typical SIT1044GQ application with a 5V microcontroller

ADDITIONAL DESCRIPTION

1 Sketch

The SIT1044GQ is an interface chip designed for use between CAN protocol controllers and the physical bus, applicable in automotive and industrial control fields. It supports Flexible Data-Rate of up to 5Mbps and features differential signal transmission capability between the bus and the CAN protocol controller.

2 Overtemperature protection

The device is protected against overtemperature conditions. If the junction temperature exceeds the shutdown junction temperature, $T_{j(sd)}$, the CAN bus drivers are disabled. When the junction temperature drops below $T_{j(sd)rel}$, the CAN bus drivers recover once TXD has been reset to HIGH and Normal mode is selected (waiting for TXD to go HIGH prevents output driver oscillation due to small variations in temperature).

3 Undervoltage protection

If VCC drops below the standby undervoltage detection threshold $(V_{uvd(stb)(VCC)})$ for $t_{det(uv)}$, the transceiver switches to Standby mode. The logic state of pin STB is ignored until VCC has recovered.

In SIT1044GQT/3 and SIT1044GQTK/3 version, if VIO drops below the switch-off undervoltage detection threshold ($V_{uvd(swoff)(VIO)}$) for $t_{uvd(swoff)}$, the transceiver switches to Off mode and disengages from the bus (high-ohmic) until VIO has recovered.

In the SIT1044GQ, if VCC drops below the switch-off undervoltage detection threshold ($V_{uvd(swoff)(VCC)}$) for $t_{uvd(swoff)}$, the transceiver switches to Off mode and disengages from the bus (high-ohmic) until VCC has recovered.

4 Operating modes

SIT1044GQ supports three operating modes, Normal, Standby and Off. The operating mode is selected via pin STB. The following table shows the corresponding mode status.

Mode	Inputs		Outputs		
Mode	STB TXD CAN d		CAN driver	RXD	
		LOW	Dominant	LOW	
Normal	LOW	HIGH	Recessive	LOW when bus dominant	
	HIGH Reces		Recessive	HIGH when bus recessive	
Standby	HIGH	X	Diagod to ground	Follows BUS when wake- up detected	
Standby	піоп	Λ	Biased to ground	HIGH when no wake-up detected	
Off ⁽¹⁾	X	X	High-ohmic state	High-ohmic state	

⁽¹⁾ Off mode is entered when the voltage on pin VIO or pin VCC is below the switch-off undervoltage detection threshold.

4.1 Off mode

The SIT1044GQ switches to Off mode from any mode when the supply voltage falls below the switch-off undervoltage threshold $V_{uvd(swoff)}$. This is the default mode when powered on.

In Off mode, the pins CAN and RXD are in a high-ohmic state.

4.2 Standby mode

When the supply voltage rises above the switch-off undervoltage detection threshold, the SIT1044GQ starts to boot up, triggering an initialization procedure.

Standby mode is selected when pin STB goes HIGH. In this mode, the transceiver is unable to transmit or receive data and a low-power receiver is activated to monitor the bus for a wake-up pattern. The transmitter and Normal-mode receiver blocks are switched off and the bus pins are biased to ground to minimize system supply current. Pin RXD follows the bus after a wake-up request has been detected.

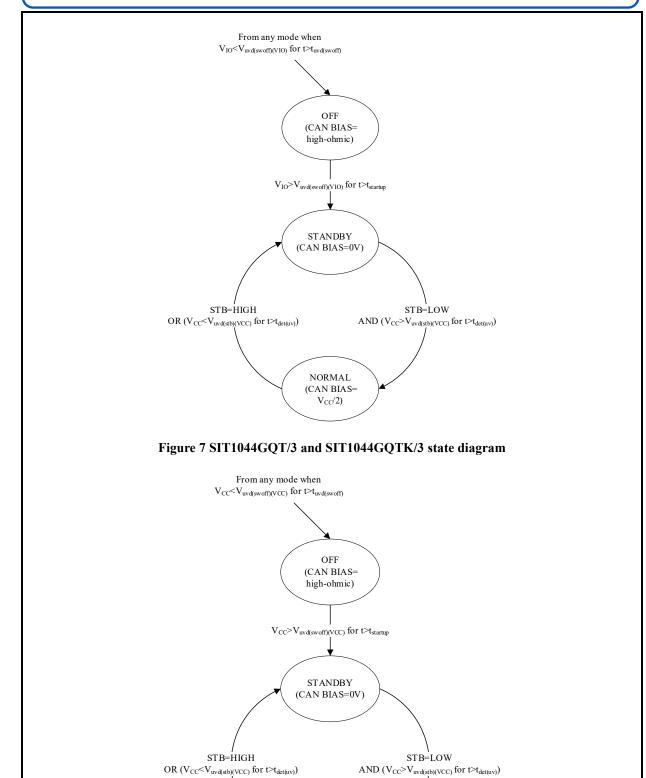
A transition to Normal mode is triggered when STB is forced LOW.

If the supply voltage is below the Standby undervoltage hysteresis voltage $V_{uvd(stb)}$ when STB goes LOW, the SIT1044GQ will remain in Standby mode.

Pending wake-up events will be cleared and differential data on the bus pins converted to digital data via the low-power receiver and output on pin RXD.

In SIT1044GQT/3 and SIT1044GQTK/3 version, the low-power receiver is supplied from VIO and can detect CAN bus activity when VIO is above switch-off undervoltage detection voltage $V_{uvd(swoff)}$ (even if VIO is the only available supply voltage).

4.3 Normal mode


A LOW level on pin STB selects Normal mode, provided the supply voltage on pin VCC is above the standby undervoltage detection threshold, $V_{uvd(std)}$.

In this mode, the transceiver can transmit and receive data via bus lines CANH and CANL. Pin TXD must be HIGH at least once in Normal Mode before transmission can begin. The differential receiver converts the analog data on the bus lines into digital data on pin RXD. The slopes of the output signals on the bus lines into digital data on pin RXD. The slopes of the output signals on the bus lines are controlled internally and are optimized in a way that guarantees the lowest possible EME. In order to support high bit rates, especially in CAN FD systems, the Signal Improvement function largely eliminates topology-related reflections and impedance mismatches. In recessive state, the output voltage on the bus pins is VCC/2.

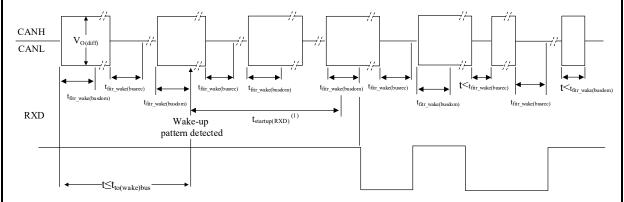
4.4 Operating modes and gap-free operation

Gap-free operation guarantees defined behavior at all voltage levels. Supply voltage-to-operating mode mapping is detailed in **Figure 9** in the state diagrams (**Figure 7** and **Figure 8**).

 $\begin{array}{c} NORMAL \\ (CAN BIAS = \\ V_{CC}/2) \end{array}$

	5.5V - 6V			Fully functiona	ıl
Voltage range on VCC	V _{CC} operating range (4.5V-5.5V)	Off	Fully functional or off	Fully functional and characteristics guaranteed	
ltage ran	$V_{uvd(stb)(VCC)} range$		Fully functional or standby or off	Fully functional standby	or
Vc	-0.3-3.4V		Standby or off	Standby	
		-0.3-0.95V	Vuvd(swoff)(VIO) range	V ₁₀ operating range 1.65V-5.5V	5.5-6V
			Voltage range	e on VIO	

	5.5V - 6V	Fully functional	
Voltage range on VCC	V _{CC} operating range (4.5V-5.5V)	Fully functional and characteristics guaranteed	
an		F 11 C .: 1	
ltage r	$V_{uvd(stb)(VCC)}$ range	Fully functional or standby	
Voltager	V _{uvd(stb)(VCC)} range	•	
Voltage r		standby	
Voltager	1.65-3.4V	standby Standby	

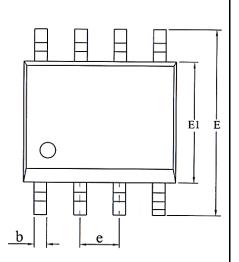

Figure 9 Supply voltage ranges and gap-free operation

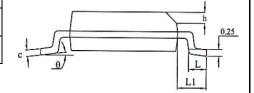
5 Dominant timeout function

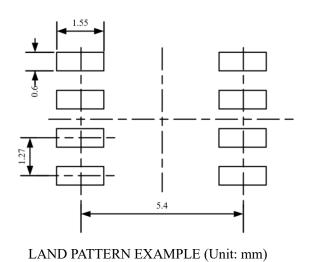
A "TXD dominant time-out" timer is started when pin TXD is set LOW. If the LOW state on this pin persists for longer than $t_{to(dom)TXD}$, the transmitter is disabled, releasing the bus lines to recessive state. This function prevents a hardware and/or software application failure from driving the bus lines to a permanent dominant state (blocking all network communications). The TXD dominant time-out timer is reset when pin TXD goes HIGH.

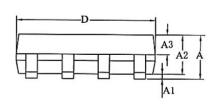
6 Remote wake-up

SIT1044GQ wakes up from Standby mode when dedicated wake-up pattern is detected on the bus. Wake-up timing is shown in the **Figure 10**.

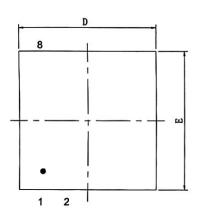

(1) During $t_{startup(RXD)}$, the low-power receiver is on but pin RXD is not active (i.e. HIGH/recessive). The first dominant pulse of width $\geq t_{filr}$ (wake)bus that ends after $t_{startup(RXD)}$ will trigger RXD to go LOW/dominant.

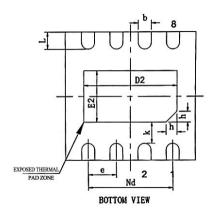

Figure 10 Wake-up timing

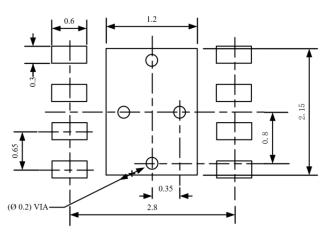


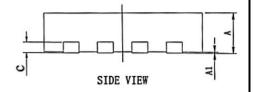

SOP8 DIMENSIONS

Package size						
Symbol	Min./mm	Typ./mm	Max./mm			
A	-	-	1.75			
A1	0.10	-	0.225			
A2	1.30	1.40	1.50			
A3	0.60	0.65	0.70			
b	0.39	-	0.47			
D	4.80	4.90	5.00			
Е	5.80	6.00	6.20			
E1	3.80	3.90	4.00			
e		1.27BSC				
L	0.50	-	0.80			
L1		1.05REF				
c	0.20	-	0.24			
θ	0°	-	8°			

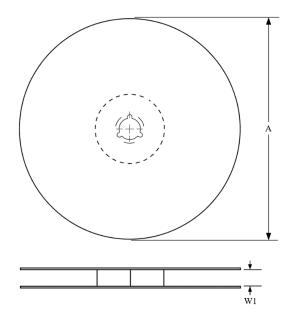


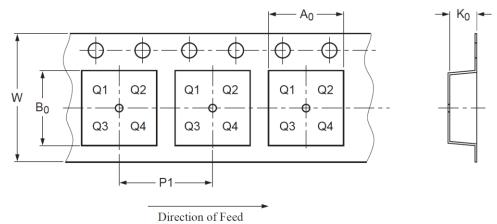





DFN3*3-8 DIMENSIONS

Package size				
Symbol	Min./mm	Typ./mm	Max./mm	
A	0.70	0.75	0.80	
A1	0	0.02	0.05	
A3		0.203 REF		
D	2.90	3.00	3.10	
Е	2.90	3.00	3.10	
D2	2.05	2.15	2.25	
Nd		1.95BSC		
E2	1.10	1.20	1.30	
b	0.25	0.30	0.35	
e		0.65BSC		
k		0.50REF		
L	0.35	0.40 0.45		
h	0.20	0.25	0.30	



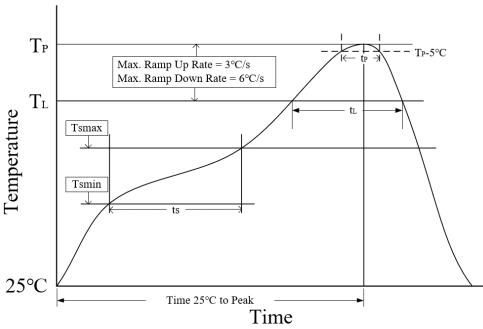

LAND PATTERN EXAMPLE (Unit: mm)

TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

PIN1 is in quadrant 1

Package Type	Reel Diameter A (mm)	Tape Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)
SOP8	330±1	12.4	6.60±0.1	5.30±0.10	1.90±0.1	8.00±0.1	12.00±0.1
DFN3*3-8	329±1	12.4	3.30±0.1	3.30±0.1	1.10±0.1	8.00±0.1	12.00±0.3


ORDERING INFORMATION

Type number	Package	MSL	Packing
SIT1044GQT/3	SOP8	MSL3	Tape and reel
SIT1044GQT	SOP8	MSL3	Tape and reel
SIT1044GQTK/3	DFN3*3-8	MSL1	Tape and reel
SIT1044GQTK	DFN3*3-8	MSL1	Tape and reel

SOP8 is packed with 2500 pieces/disc in braided packaging; Leadless DFN3*3-8 is packed with 6000 pieces/disc in braided packaging.

REFLOW SOLDERING

Parameter	Lead-free soldering conditions
Ave ramp up rate (T _L to T _P)	3 °C/second max
Preheat time ts (T _{smin} =150 °C to T _{smax} =200 °C)	60-120 seconds
Melting time t _L (T _L =217 °C)	60-150 seconds
Peak temp T _P	260-265 °C
5 °C below peak temperature t _P	30 seconds
Ave cooling rate (T _P to T _L)	6 °C/second max
Normal temperature 25°C to peak temperature T _P time	8 minutes max

Important statement

SIT reserves the right to change the above-mentioned information without prior notice.

REVISION HISTORY

Version number	Data sheet status	Revision date
V1.0	Initial version.	October 2025